論文の概要: Explainable Multi-Stakeholder Job Recommender Systems
- arxiv url: http://arxiv.org/abs/2410.00654v1
- Date: Tue, 1 Oct 2024 13:12:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 04:35:05.178750
- Title: Explainable Multi-Stakeholder Job Recommender Systems
- Title(参考訳): 説明可能なマルチステークホルダジョブレコメンダシステム
- Authors: Roan Schellingerhout,
- Abstract要約: 新しい法律は、プライバシ、公正性、レコメンダシステムとAI全体の説明可能性といった側面に焦点を当てている。
これらのシステムは、求職者、採用者、企業によって同時に使用されるため、マルチステークホルダーアプローチが必要である。
説明可能なマルチステークホルダー求人システムに関する現在の研究を要約し、今後の研究の方向性を概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Public opinion on recommender systems has become increasingly wary in recent years. In line with this trend, lawmakers have also started to become more critical of such systems, resulting in the introduction of new laws focusing on aspects such as privacy, fairness, and explainability for recommender systems and AI at large. These concepts are especially crucial in high-risk domains such as recruitment. In recruitment specifically, decisions carry substantial weight, as the outcomes can significantly impact individuals' careers and companies' success. Additionally, there is a need for a multi-stakeholder approach, as these systems are used by job seekers, recruiters, and companies simultaneously, each with its own requirements and expectations. In this paper, I summarize my current research on the topic of explainable, multi-stakeholder job recommender systems and set out a number of future research directions.
- Abstract(参考訳): 近年,レコメンデーションシステムに対する世論はますます慎重になっている。
この傾向に沿って、議員はこうしたシステムに対してより批判的になり始めており、結果として、リコメンダシステムやAI全体に対するプライバシー、公正性、説明可能性といった側面に焦点を当てた新しい法律が導入された。
これらの概念は、採用のようなリスクの高い領域では特に重要である。
特に採用において、決定は個人のキャリアや企業成功に大きな影響を及ぼす可能性があるため、かなりの重みを負う。
さらに、求職者、採用者、企業がそれぞれ独自の要件と期待を持って同時に使用するため、マルチステークホルダーアプローチが必要である。
本稿では、説明可能な多人数求職者推薦システムに関する現在の研究を要約し、今後の研究の方向性を概説する。
関連論文リスト
- Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
このチュートリアルでは、大規模言語モデル(LLM)を統合するための2つの主要なアプローチを探求する。
これは、最近の進歩、課題、潜在的研究の方向性を含む、生成的な大規模なレコメンデーションモデルの包括的な概要を提供する。
主なトピックは、データ品質、スケーリング法則、ユーザの行動マイニング、トレーニングと推論の効率性である。
論文 参考訳(メタデータ) (2025-02-19T14:48:25Z) - De-centering the (Traditional) User: Multistakeholder Evaluation of Recommender Systems [10.731079374109596]
マルチステークホルダー推薦システムの評価の複雑さに焦点をあてる。
理論的原理から実践的実装への移行について論じる。
我々は、これらの複雑で領域に依存した評価の問題について、研究者や実践者にどのように考えるかについてのガイダンスを提供することを目指している。
論文 参考訳(メタデータ) (2025-01-09T11:44:49Z) - A Deep Dive into Fairness, Bias, Threats, and Privacy in Recommender Systems: Insights and Future Research [45.86892639035389]
本研究では,推薦システムにおける公正性,バイアス,脅威,プライバシについて検討する。
アルゴリズムによる決定が、意図せずバイアスを強化したり、特定のユーザやアイテムグループを疎外したりする方法について検討する。
この研究は、推薦システムの堅牢性、公正性、プライバシーを改善するための今後の研究の方向性を示唆している。
論文 参考訳(メタデータ) (2024-09-19T11:00:35Z) - Course Recommender Systems Need to Consider the Job Market [16.88792726960708]
本稿では,職業市場のスキル要求を取り入れたコースレコメンデーションシステムの構築を目指して,産業界と連携して研究を行う学術研究者の視点に焦点を当てる。
本稿では,これらの要求を効果的に解決するためのコースレコメンデータシステムの基本的特性について概説する。
本稿では,言語モデル(LLM)をスキル抽出に用い,求人市場に合わせて強化学習(RL)を施した既存のリコメンデータシステムに対処する初期システムを提案する。
論文 参考訳(メタデータ) (2024-04-16T19:52:57Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - Recommender Systems: A Primer [7.487718119544156]
本稿では,従来のレコメンデーション問題の定式化について概説する。
次に、アイテム検索とランキングのための古典的アルゴリズムパラダイムをレビューする。
本稿では,近年のレコメンデーションシステム研究の進展について論じる。
論文 参考訳(メタデータ) (2023-02-06T06:19:05Z) - A Comprehensive Survey on Trustworthy Recommender Systems [32.523177842969915]
本稿では,信頼に値するレコメンダシステム (TRec) の概要について概説する。
それぞれの側面について、最近の技術についてまとめ、信頼性の高いレコメンデータシステムの実現を支援する研究の方向性について論じる。
論文 参考訳(メタデータ) (2022-09-21T04:34:17Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
本稿は,近年の地域におけるフェアネスの概念と概念について概観する。
この分野での研究が現在どのように行われているのかを概観する。
全体として、最近の研究成果の分析は、ある研究のギャップを示している。
論文 参考訳(メタデータ) (2022-05-23T08:34:25Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。