GMT: Enhancing Generalizable Neural Rendering via Geometry-Driven Multi-Reference Texture Transfer
- URL: http://arxiv.org/abs/2410.00672v1
- Date: Tue, 1 Oct 2024 13:30:51 GMT
- Title: GMT: Enhancing Generalizable Neural Rendering via Geometry-Driven Multi-Reference Texture Transfer
- Authors: Youngho Yoon, Hyun-Kurl Jang, Kuk-Jin Yoon,
- Abstract summary: Novel view synthesis (NVS) aims to generate images at arbitrary viewpoints using multi-view images, and recent insights from neural radiance fields (NeRF) have contributed to remarkable improvements.
G-NeRF still struggles in representing fine details for a specific scene due to the absence of per-scene optimization.
We propose a Geometry-driven Multi-reference Texture transfer network (GMT) available as a plug-and-play module designed for G-NeRF.
- Score: 40.70828307740121
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novel view synthesis (NVS) aims to generate images at arbitrary viewpoints using multi-view images, and recent insights from neural radiance fields (NeRF) have contributed to remarkable improvements. Recently, studies on generalizable NeRF (G-NeRF) have addressed the challenge of per-scene optimization in NeRFs. The construction of radiance fields on-the-fly in G-NeRF simplifies the NVS process, making it well-suited for real-world applications. Meanwhile, G-NeRF still struggles in representing fine details for a specific scene due to the absence of per-scene optimization, even with texture-rich multi-view source inputs. As a remedy, we propose a Geometry-driven Multi-reference Texture transfer network (GMT) available as a plug-and-play module designed for G-NeRF. Specifically, we propose ray-imposed deformable convolution (RayDCN), which aligns input and reference features reflecting scene geometry. Additionally, the proposed texture preserving transformer (TP-Former) aggregates multi-view source features while preserving texture information. Consequently, our module enables direct interaction between adjacent pixels during the image enhancement process, which is deficient in G-NeRF models with an independent rendering process per pixel. This addresses constraints that hinder the ability to capture high-frequency details. Experiments show that our plug-and-play module consistently improves G-NeRF models on various benchmark datasets.
Related papers
- NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
We propose NeRF-VPT, an innovative method for novel view synthesis to address these challenges.
Our proposed NeRF-VPT employs a cascading view prompt tuning paradigm, wherein RGB information gained from preceding rendering outcomes serves as instructive visual prompts for subsequent rendering stages.
NeRF-VPT only requires sampling RGB data from previous stage renderings as priors at each training stage, without relying on extra guidance or complex techniques.
arXiv Detail & Related papers (2024-03-02T22:08:10Z) - 3D Visibility-aware Generalizable Neural Radiance Fields for Interacting
Hands [51.305421495638434]
Neural radiance fields (NeRFs) are promising 3D representations for scenes, objects, and humans.
This paper proposes a generalizable visibility-aware NeRF framework for interacting hands.
Experiments on the Interhand2.6M dataset demonstrate that our proposed VA-NeRF outperforms conventional NeRFs significantly.
arXiv Detail & Related papers (2024-01-02T00:42:06Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
We propose a novel approach to distill and bake NeRFs into highly efficient mesh-based neural representations.
We demonstrate the effectiveness and superiority of our approach via extensive experiments on a range of standard datasets.
arXiv Detail & Related papers (2023-04-20T17:59:52Z) - Grid-guided Neural Radiance Fields for Large Urban Scenes [146.06368329445857]
Recent approaches propose to geographically divide the scene and adopt multiple sub-NeRFs to model each region individually.
An alternative solution is to use a feature grid representation, which is computationally efficient and can naturally scale to a large scene.
We present a new framework that realizes high-fidelity rendering on large urban scenes while being computationally efficient.
arXiv Detail & Related papers (2023-03-24T13:56:45Z) - PANeRF: Pseudo-view Augmentation for Improved Neural Radiance Fields
Based on Few-shot Inputs [3.818285175392197]
neural radiance fields (NeRF) have promising applications for novel views of complex scenes.
NeRF requires dense input views, typically numbering in the hundreds, for generating high-quality images.
We propose pseudo-view augmentation of NeRF, a scheme that expands a sufficient amount of data by considering the geometry of few-shot inputs.
arXiv Detail & Related papers (2022-11-23T08:01:10Z) - DPFNet: A Dual-branch Dilated Network with Phase-aware Fourier
Convolution for Low-light Image Enhancement [1.2645663389012574]
Low-light image enhancement is a classical computer vision problem aiming to recover normal-exposure images from low-light images.
convolutional neural networks commonly used in this field are good at sampling low-frequency local structural features in the spatial domain.
We propose a novel module using the Fourier coefficients, which can recover high-quality texture details under the constraint of semantics in the frequency phase.
arXiv Detail & Related papers (2022-09-16T13:56:09Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
We present NeRF-SR, a solution for high-resolution (HR) novel view synthesis with mostly low-resolution (LR) inputs.
Our method is built upon Neural Radiance Fields (NeRF) that predicts per-point density and color with a multi-layer perceptron.
arXiv Detail & Related papers (2021-12-03T07:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.