論文の概要: Hybrid Quantum Neural Network based Indoor User Localization using Cloud Quantum Computing
- arxiv url: http://arxiv.org/abs/2410.00708v1
- Date: Tue, 1 Oct 2024 13:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 04:15:24.532847
- Title: Hybrid Quantum Neural Network based Indoor User Localization using Cloud Quantum Computing
- Title(参考訳): ハイブリッド量子ニューラルネットワークを用いたクラウド量子コンピューティングを用いた屋内ユーザ位置推定
- Authors: Sparsh Mittal, Yash Chand, Neel Kanth Kundu,
- Abstract要約: 本稿では、受信信号強度インジケータ(RSSI)値を用いた屋内ユーザ定位のためのハイブリッド量子ニューラルネットワーク(HQNN)を提案する。
提案するHQNNの性能テストには,WiFi,Bluetooth,Zigbeeを使用して,屋内のローカライズにRSSIデータセットを公開している。
また、HQNNの性能と最近提案された量子フィンガープリントに基づくユーザローカライゼーション手法を比較した。
- 参考スコア(独自算出の注目度): 10.93754409707771
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a hybrid quantum neural network (HQNN) for indoor user localization using received signal strength indicator (RSSI) values. We use publicly available RSSI datasets for indoor localization using WiFi, Bluetooth, and Zigbee to test the performance of the proposed HQNN. We also compare the performance of the HQNN with the recently proposed quantum fingerprinting-based user localization method. Our results show that the proposed HQNN performs better than the quantum fingerprinting algorithm since the HQNN has trainable parameters in the quantum circuits, whereas the quantum fingerprinting algorithm uses a fixed quantum circuit to calculate the similarity between the test data point and the fingerprint dataset. Unlike prior works, we also test the performance of the HQNN and quantum fingerprint algorithm on a real IBM quantum computer using cloud quantum computing services. Therefore, this paper examines the performance of the HQNN on noisy intermediate scale (NISQ) quantum devices using real-world RSSI localization datasets. The novelty of our approach lies in the use of simple feature maps and ansatz with fewer neurons, alongside testing on actual quantum hardware using real-world data, demonstrating practical applicability in real-world scenarios.
- Abstract(参考訳): 本稿では、受信信号強度インジケータ(RSSI)値を用いた屋内ユーザローカライゼーションのためのハイブリッド量子ニューラルネットワーク(HQNN)を提案する。
提案するHQNNの性能をテストするために,WiFi,Bluetooth,Zigbeeを用いて,屋内のローカライズにRSSIデータセットを公開している。
また、HQNNの性能と最近提案された量子フィンガープリントに基づくユーザローカライゼーション手法を比較した。
その結果、HQNNは量子回路にトレーニング可能なパラメータを持つため、HQNNは量子フィンガープリントアルゴリズムよりも優れており、一方、量子フィンガープリントアルゴリズムは、固定量子回路を用いて、テストデータポイントと指紋データセットの類似性を計算している。
従来の研究とは異なり、クラウド量子コンピューティングサービスを使用して、実際のIBM量子コンピュータ上でHQNNと量子指紋アルゴリズムの性能をテストする。
そこで本研究では,実世界のRSSIローカライゼーションデータセットを用いたNISQ量子デバイスにおけるHQNNの性能について検討する。
このアプローチの斬新さは、より少ないニューロンで単純なフィーチャーマップとアンサッツを使用することと、実際の量子ハードウェアで実世界のデータを使ってテストし、実世界のシナリオで実践的な適用性を実証することにあります。
関連論文リスト
- Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
ディープフェイク技術は プライバシー セキュリティ 情報整合性に 課題をもたらす
本稿では,ディープフェイク音声の検出を強化するために,量子学習型畳み込みニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-11T20:52:10Z) - Optimizing Quantum Convolutional Neural Network Architectures for Arbitrary Data Dimension [2.9396076967931526]
量子畳み込みニューラルネットワーク(QCNN)は量子機械学習において有望なアプローチである。
量子リソースの割り当てを最適化しながら任意の入力データ次元を処理できるQCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-28T02:25:12Z) - Studying the Impact of Quantum-Specific Hyperparameters on Hybrid Quantum-Classical Neural Networks [4.951980887762045]
ハイブリッド量子古典ニューラルネットワーク(HQNN)は、古典的な機械学習の強みと量子コンピューティング能力を組み合わせた、有望なソリューションである。
本稿では,PennyLaneフレームワーク上に実装された画像分類タスクのHQNNモデルに対して,これらのバリエーションが与える影響について検討する。
我々は,HQNNモデルの直感的および直感的学習パターンを制御された量子摂動の粒度レベル内で明らかにし,精度とトレーニング時間との相関関係の健全な基盤を構築することを目的としている。
論文 参考訳(メタデータ) (2024-02-16T11:44:25Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum Self-Attention Neural Networks for Text Classification [8.975913540662441]
量子自己アテンションニューラルネットワーク(QSANN)と呼ばれる,新しいシンプルなネットワークアーキテクチャを提案する。
本稿では,量子ニューラルネットワークに自己アテンション機構を導入し,ガウス射影量子自己アテンションを自己アテンションの有感な量子バージョンとして活用する。
提案手法は低レベル量子雑音に対するロバスト性を示し,量子ニューラルネットワークアーキテクチャに対するレジリエンスを示す。
論文 参考訳(メタデータ) (2022-05-11T16:50:46Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。