論文の概要: LTLf Synthesis on First-Order Action Theories
- arxiv url: http://arxiv.org/abs/2410.00726v1
- Date: Tue, 1 Oct 2024 14:15:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 04:15:24.443768
- Title: LTLf Synthesis on First-Order Action Theories
- Title(参考訳): 第一次行動理論におけるLTLf合成
- Authors: Till Hofmann, Jens Claßen,
- Abstract要約: Gologは非決定論的演算子を含む表現力のあるハイレベルエージェント言語である。
本稿では,非決定論の一部が環境の制御下にある,より現実的な事例について考察する。
成功した実現はプログラムを実行し、可能なすべての環境アクションの時間的目標を満たす。
- 参考スコア(独自算出の注目度): 2.209921757303168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Golog is an expressive high-level agent language that includes nondeterministic operators which allow to leave some of the decisions to be made only at execution time. This so-called program realization is typically implemented by means of search, or in an incremental online fashion. In this paper, we consider the more realistic case where parts of the non-determinism are under the control of the environment. Program realization then becomes a synthesis problem, where a successful realization executes the program and satisfies the temporal goal for all possible environment actions. We consider Golog programs in combination with an expressive class of first-order action theories that allow for an unbounded number of objects and non-local effects, together with a temporal goal specified in a first-order extension of LTLf. We solve the synthesis problem by constructing a game arena that captures all possible executions of the program while tracking the satisfaction of the temporal goal and then solving the resulting two-player game. We evaluate the approach in two domains, showing the general feasibility of the approach.
- Abstract(参考訳): Gologは表現力のあるハイレベルなエージェント言語で、非決定論的演算子が含まれており、実行時にのみ決定を下すことができる。
いわゆるプログラム実現は、通常、検索やインクリメンタルなオンライン方式で実装される。
本稿では,非決定論の一部が環境の制御下にある,より現実的な事例について考察する。
プログラムの実現は、成功した実現がプログラムを実行し、可能なすべての環境アクションの時間的目標を満たす合成問題となる。
我々は,Gologプログラムと,非有界なオブジェクト数と非局所効果を許容する一階アクション理論の表現型クラスと,LTLfの1階拡張で指定された時間的目標とを組み合わせて検討する。
本研究では、時間的目標の満足度を追跡しながらプログラムの実行を全てキャプチャするゲームアリーナを構築し、その結果の2人プレイヤゲームを解決することで、合成問題を解決する。
提案手法を2つの領域で評価し,本手法の汎用性を示した。
関連論文リスト
- IPSynth: Interprocedural Program Synthesis for Software Security Implementation [3.1119394814248253]
本稿では,提案手法の仕様を自動学習する新しい言語間プログラム合成手法であるIP Synthを紹介する。
提案手法は,プログラム内の対応する箇所を正確に特定し,必要なコードスニペットを合成し,プログラムに追加し,ChatGPTをプログラム間の戦術的合成タスクで上回ることを示す。
論文 参考訳(メタデータ) (2024-03-16T07:12:24Z) - ExeDec: Execution Decomposition for Compositional Generalization in Neural Program Synthesis [54.18659323181771]
プログラム合成において望ましいいくつかの異なる構成一般化形式を特徴付ける。
本稿では,ExeDecを提案する。ExeDecは,実行サブゴールを予測し,各ステップでプログラム実行によって段階的に通知される問題を解くための,新しい分解ベースの戦略である。
論文 参考訳(メタデータ) (2023-07-26T01:07:52Z) - Controlling Golog Programs against MTL Constraints [4.56877715768796]
本稿では、クロックによるGologの拡張と、必要な理論的基礎と決定可能性の結果について述べる。
本稿では,高レベルプログラムと低レベルプラットフォーム操作を同時に実行するコントローラを合成する手法について述べる。
論文 参考訳(メタデータ) (2022-04-07T17:16:37Z) - Searching for More Efficient Dynamic Programs [61.79535031840558]
本稿では,プログラム変換の集合,変換プログラムの効率を評価するための単純な指標,およびこの指標を改善するための探索手順について述べる。
実際に、自動検索は初期プログラムの大幅な改善を見出すことができることを示す。
論文 参考訳(メタデータ) (2021-09-14T20:52:55Z) - Latent Execution for Neural Program Synthesis Beyond Domain-Specific
Languages [97.58968222942173]
入力出力の例からCプログラムを合成する第一歩を踏み出す。
特に,部分生成プログラムの実行を近似するために潜在表現を学習するLa Synthを提案する。
これらのプログラムのトレーニングにより,Karel と C のプログラム合成における予測性能がさらに向上することを示す。
論文 参考訳(メタデータ) (2021-06-29T02:21:32Z) - Representing Partial Programs with Blended Abstract Semantics [62.20775388513027]
プログラム合成エンジンにおける部分的なプログラム表現手法について紹介する。
モジュラーニューラルネットワークとして実装された近似実行モデルを学ぶ。
これらのハイブリッドニューロシンボリック表現は、実行誘導型シンセサイザーがより強力な言語構成を使うことができることを示す。
論文 参考訳(メタデータ) (2020-12-23T20:40:18Z) - Latent Programmer: Discrete Latent Codes for Program Synthesis [56.37993487589351]
プログラム合成や文書要約などの多くのシーケンス学習タスクにおいて、重要な問題は出力シーケンスの広い空間を探索することである。
本稿では,検索対象とする出力の表現を学習することを提案する。
本稿では,まず入力/出力サンプルから離散潜在コードを予測するプログラム合成手法であるemphLatent Programmerを紹介し,そのプログラムを対象言語で生成する。
論文 参考訳(メタデータ) (2020-12-01T10:11:35Z) - Optimal Neural Program Synthesis from Multimodal Specifications [45.35689345004124]
マルチモーダルプログラム合成は、プログラム合成を挑戦的な設定に拡張する魅力的な方法である。
本稿では,ユーザが提供する制約を満たすプログラムを見つけることを目的とした,最適なニューラルシンセサイザー手法を提案する。
論文 参考訳(メタデータ) (2020-10-04T20:51:21Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
プログラムのボトムアップ検索に学習を活用する新しい合成手法を提案する。
特に、入力出力例のセットに基づいて、探索条件中の中間値の合成を優先順位付けするようにモデルを訓練する。
単純な教師付き学習アプローチであっても,学習とボトムアップ検索の組み合わせは極めて効果的であることを示す。
論文 参考訳(メタデータ) (2020-07-28T17:46:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。