ERASMO: Leveraging Large Language Models for Enhanced Clustering Segmentation
- URL: http://arxiv.org/abs/2410.03738v1
- Date: Tue, 1 Oct 2024 00:37:16 GMT
- Title: ERASMO: Leveraging Large Language Models for Enhanced Clustering Segmentation
- Authors: Fillipe dos Santos Silva, Gabriel Kenzo Kakimoto, Julio Cesar dos Reis, Marcelo S. Reis,
- Abstract summary: Cluster analysis plays a crucial role in various domains and applications, such as customer segmentation in marketing.
This study introduces ERASMO, a framework designed to fine-tune a pretrained language model on textually encoded data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cluster analysis plays a crucial role in various domains and applications, such as customer segmentation in marketing. These contexts often involve multimodal data, including both tabular and textual datasets, making it challenging to represent hidden patterns for obtaining meaningful clusters. This study introduces ERASMO, a framework designed to fine-tune a pretrained language model on textually encoded tabular data and generate embeddings from the fine-tuned model. ERASMO employs a textual converter to transform tabular data into a textual format, enabling the language model to process and understand the data more effectively. Additionally, ERASMO produces contextually rich and structurally representative embeddings through techniques such as random feature sequence shuffling and number verbalization. Extensive experimental evaluations were conducted using multiple datasets and baseline approaches. Our results demonstrate that ERASMO fully leverages the specific context of each tabular dataset, leading to more precise and nuanced embeddings for accurate clustering. This approach enhances clustering performance by capturing complex relationship patterns within diverse tabular data.
Related papers
- Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts [1.565361244756411]
Large language models (LLMs) play a crucial role in natural language processing (NLP) tasks.
This study applied prompt-based data augmentation to detect mentions of green practices in Russian social media.
arXiv Detail & Related papers (2024-11-22T12:37:41Z) - A Survey on Deep Tabular Learning [0.0]
Tabular data presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure.
This survey reviews the evolution of deep learning models for Tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet.
arXiv Detail & Related papers (2024-10-15T20:08:08Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
Large language models (LLMs) have become increasingly pivotal across various domains.
BabelBench is an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution.
Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement.
arXiv Detail & Related papers (2024-10-01T15:11:24Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data.
We introduce MMTabQA, a new dataset designed for this purpose.
Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs.
arXiv Detail & Related papers (2024-08-25T15:17:43Z) - Text Clustering with LLM Embeddings [0.0]
The effectiveness of text clustering largely depends on the selection of textual embeddings and clustering algorithms.
Recent advancements in large language models (LLMs) have the potential to enhance this task.
Findings indicate that LLM embeddings are superior at capturing subtleties in structured language.
arXiv Detail & Related papers (2024-03-22T11:08:48Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
Click-through rate (CTR) prediction plays as a core function module in personalized online services.
Traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality.
Pretrained Language Models(PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality.
We propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models(FLIP) for CTR prediction.
arXiv Detail & Related papers (2023-10-30T11:25:03Z) - Improving Compositional Generalization with Self-Training for
Data-to-Text Generation [36.973617793800315]
We study the compositional generalization of current generation models in data-to-text tasks.
By simulating structural shifts in the compositional Weather dataset, we show that T5 models fail to generalize to unseen structures.
We propose an approach based on self-training using finetuned BLEURT for pseudo-response selection.
arXiv Detail & Related papers (2021-10-16T04:26:56Z) - Data-to-text Generation with Macro Planning [61.265321323312286]
We propose a neural model with a macro planning stage followed by a generation stage reminiscent of traditional methods.
Our approach outperforms competitive baselines in terms of automatic and human evaluation.
arXiv Detail & Related papers (2021-02-04T16:32:57Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.