CktGen: Specification-Conditioned Analog Circuit Generation
- URL: http://arxiv.org/abs/2410.00995v1
- Date: Tue, 1 Oct 2024 18:35:44 GMT
- Title: CktGen: Specification-Conditioned Analog Circuit Generation
- Authors: Yuxuan Hou, Jianrong Zhang, Hua Chen, Min Zhou, Faxin Yu, Hehe Fan, Yi Yang,
- Abstract summary: We introduce a task that directly generates analog circuits based on specified specifications.
Specifically, we propose CktGen, a simple yet effective variational autoencoder (VAE) model.
We conduct comprehensive experiments on the Open Circuit Benchmark (OCB) and introduce new evaluation metrics for cross-model consistency.
- Score: 28.780603785886242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic synthesis of analog circuits presents significant challenges. Existing methods usually treat the task as optimization problems, which limits their transferability and reusability for new requirements. To address this limitation, we introduce a task that directly generates analog circuits based on specified specifications, termed specification-conditioned analog circuit generation. Specifically, we propose CktGen, a simple yet effective variational autoencoder (VAE) model, that maps specifications and circuits into a joint latent space, and reconstructs the circuit from the latent. Moreover, given that a single specification can correspond to multiple distinct circuits, simply minimizing the distance between the mapped latent representations of the circuit and specification does not capture these one-to-many relationships. To address this, we integrate contrastive learning and classifier guidance to prevent model collapse. We conduct comprehensive experiments on the Open Circuit Benchmark (OCB) and introduce new evaluation metrics for cross-model consistency in the specification-to-circuit generation task. Experimental results demonstrate substantial improvements over existing state-of-the-art methods.
Related papers
- Automated Placement of Analog Integrated Circuits using Priority-based Constructive Heuristic [0.0]
We focus on the specific class of analog placement, which requires so-called pockets, their possible merging, and parametrizable minimum distances between devices.
Our solution minimizes the perimeter of the circuit's bounding box and the approximated wire length.
We show the quality of the proposed method on both synthetically generated and real-life industrial instances accompanied by manually created designs.
arXiv Detail & Related papers (2024-10-18T07:16:59Z) - LaMAGIC: Language-Model-based Topology Generation for Analog Integrated Circuits [17.002169206594793]
We introduce LaMAGIC, a pioneering language model-based topology generation model.
LaMAGIC can efficiently generate an optimized circuit design from the custom specification in a single pass.
LaMAGIC achieves a success rate of up to 96% under a strict tolerance of 0.01.
arXiv Detail & Related papers (2024-07-19T22:51:41Z) - Finding Transformer Circuits with Edge Pruning [71.12127707678961]
We propose Edge Pruning as an effective and scalable solution to automated circuit discovery.
Our method finds circuits in GPT-2 that use less than half the number of edges compared to circuits found by previous methods.
Thanks to its efficiency, we scale Edge Pruning to CodeLlama-13B, a model over 100x the scale that prior methods operate on.
arXiv Detail & Related papers (2024-06-24T16:40:54Z) - Graph Attention-Based Symmetry Constraint Extraction for Analog Circuits [15.126046083792597]
We propose a graph-based learning framework to automatically extract symmetric constraints in analog circuit layout.
The proposed framework leverages the connection characteristics of circuits and the devices' information to learn the general rules of symmetric constraints.
arXiv Detail & Related papers (2023-12-22T03:10:59Z) - Tractable Bounding of Counterfactual Queries by Knowledge Compilation [51.47174989680976]
We discuss the problem of bounding partially identifiable queries, such as counterfactuals, in Pearlian structural causal models.
A recently proposed iterated EM scheme yields an inner approximation of those bounds by sampling the initialisation parameters.
We show how a single symbolic knowledge compilation allows us to obtain the circuit structure with symbolic parameters to be replaced by their actual values.
arXiv Detail & Related papers (2023-10-05T07:10:40Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Adaptive Planning Search Algorithm for Analog Circuit Verification [53.97809573610992]
We propose a machine learning (ML) approach, which uses less simulations.
We show that the proposed approach is able to provide OCCs closer to the specifications for all circuits.
arXiv Detail & Related papers (2023-06-23T12:57:46Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - Iterative Circuit Repair Against Formal Specifications [3.7277730514654555]
We present a deep learning approach for repairing sequential circuits against formal specifications given in linear-time temporal logic (LTL)
We propose a separated hierarchical Transformer for multimodal representation learning of the formal specification and the circuit.
Our proposed repair mechanism significantly improves the automated synthesis of circuits from specifications with Transformers.
arXiv Detail & Related papers (2023-03-02T11:05:10Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.