Graph Attention-Based Symmetry Constraint Extraction for Analog Circuits
- URL: http://arxiv.org/abs/2312.14405v2
- Date: Thu, 16 May 2024 10:53:52 GMT
- Title: Graph Attention-Based Symmetry Constraint Extraction for Analog Circuits
- Authors: Qi Xu, Lijie Wang, Jing Wang, Lin Cheng, Song Chen, Yi Kang,
- Abstract summary: We propose a graph-based learning framework to automatically extract symmetric constraints in analog circuit layout.
The proposed framework leverages the connection characteristics of circuits and the devices' information to learn the general rules of symmetric constraints.
- Score: 15.126046083792597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, analog circuits have received extensive attention and are widely used in many emerging applications. The high demand for analog circuits necessitates shorter circuit design cycles. To achieve the desired performance and specifications, various geometrical symmetry constraints must be carefully considered during the analog layout process. However, the manual labeling of these constraints by experienced analog engineers is a laborious and time-consuming process. To handle the costly runtime issue, we propose a graph-based learning framework to automatically extract symmetric constraints in analog circuit layout. The proposed framework leverages the connection characteristics of circuits and the devices' information to learn the general rules of symmetric constraints, which effectively facilitates the extraction of device-level constraints on circuit netlists. The experimental results demonstrate that compared to state-of-the-art symmetric constraint detection approaches, our framework achieves higher accuracy and F1-score.
Related papers
- CktGen: Specification-Conditioned Analog Circuit Generation [28.780603785886242]
We introduce a task that directly generates analog circuits based on specified specifications.
Specifically, we propose CktGen, a simple yet effective variational autoencoder (VAE) model.
We conduct comprehensive experiments on the Open Circuit Benchmark (OCB) and introduce new evaluation metrics for cross-model consistency.
arXiv Detail & Related papers (2024-10-01T18:35:44Z) - LaMAGIC: Language-Model-based Topology Generation for Analog Integrated Circuits [17.002169206594793]
We introduce LaMAGIC, a pioneering language model-based topology generation model.
LaMAGIC can efficiently generate an optimized circuit design from the custom specification in a single pass.
LaMAGIC achieves a success rate of up to 96% under a strict tolerance of 0.01.
arXiv Detail & Related papers (2024-07-19T22:51:41Z) - Finding Transformer Circuits with Edge Pruning [71.12127707678961]
We propose Edge Pruning as an effective and scalable solution to automated circuit discovery.
Our method finds circuits in GPT-2 that use less than half the number of edges compared to circuits found by previous methods.
Thanks to its efficiency, we scale Edge Pruning to CodeLlama-13B, a model over 100x the scale that prior methods operate on.
arXiv Detail & Related papers (2024-06-24T16:40:54Z) - Machine Learning Driven Global Optimisation Framework for Analog Circuit Design [0.0]
We propose a machine learning-driven optimisation framework for analog circuit design.
We employ machine learning models and spice simulations to direct the optimisation algorithm.
arXiv Detail & Related papers (2024-02-27T03:51:00Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Adaptive Planning Search Algorithm for Analog Circuit Verification [53.97809573610992]
We propose a machine learning (ML) approach, which uses less simulations.
We show that the proposed approach is able to provide OCCs closer to the specifications for all circuits.
arXiv Detail & Related papers (2023-06-23T12:57:46Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - A general approach for identifying hierarchical symmetry constraints for
analog circuit layout [2.249249418652524]
This paper presents a general methodology for the automated generation of symmetry constraints.
The proposed method operates hierarchically and uses graph-based algorithms to extract multiple axes of symmetry within a circuit.
An important ingredient of the algorithm is its ability to identify arrays of repeated structures.
arXiv Detail & Related papers (2020-09-30T18:34:58Z) - Characterizing the loss landscape of variational quantum circuits [77.34726150561087]
We introduce a way to compute the Hessian of the loss function of VQCs.
We show how this information can be interpreted and compared to classical neural networks.
arXiv Detail & Related papers (2020-08-06T17:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.