Pediatric Wrist Fracture Detection Using Feature Context Excitation Modules in X-ray Images
- URL: http://arxiv.org/abs/2410.01031v2
- Date: Thu, 7 Nov 2024 15:41:48 GMT
- Title: Pediatric Wrist Fracture Detection Using Feature Context Excitation Modules in X-ray Images
- Authors: Rui-Yang Ju, Chun-Tse Chien, Enkaer Xieerke, Jen-Shiun Chiang,
- Abstract summary: This work introduces four variants of Feature Contexts Excitation-YOLOv8 model, each incorporating a different FCE module.
Experimental results on GRAZPEDWRI-DX dataset demonstrate that our proposed YOLOv8+GC-M3 model improves the mAP@50 value from 65.78% to 66.32%.
Our proposed YOLOv8+SE-M3 model achieves the highest mAP@50 value of 67.07%, exceeding the SOTA performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Children often suffer wrist trauma in daily life, while they usually need radiologists to analyze and interpret X-ray images before surgical treatment by surgeons. The development of deep learning has enabled neural networks to serve as computer-assisted diagnosis (CAD) tools to help doctors and experts in medical image diagnostics. Since YOLOv8 model has obtained the satisfactory success in object detection tasks, it has been applied to various fracture detection. This work introduces four variants of Feature Contexts Excitation-YOLOv8 (FCE-YOLOv8) model, each incorporating a different FCE module (i.e., modules of Squeeze-and-Excitation (SE), Global Context (GC), Gather-Excite (GE), and Gaussian Context Transformer (GCT)) to enhance the model performance. Experimental results on GRAZPEDWRI-DX dataset demonstrate that our proposed YOLOv8+GC-M3 model improves the mAP@50 value from 65.78% to 66.32%, outperforming the state-of-the-art (SOTA) model while reducing inference time. Furthermore, our proposed YOLOv8+SE-M3 model achieves the highest mAP@50 value of 67.07%, exceeding the SOTA performance. The implementation of this work is available at https://github.com/RuiyangJu/FCE-YOLOv8.
Related papers
- YOLOv8-ResCBAM: YOLOv8 Based on An Effective Attention Module for Pediatric Wrist Fracture Detection [0.0]
This paper proposes YOLOv8-ResCBAM, which incorporates Convolutional Block Attention Module integrated with resblock (ResCBAM) into the original YOLOv8 network architecture.
The experimental results on the GRAZPEDWRI-DX dataset demonstrate that the mean Average Precision calculated at Intersection over Union threshold of 0.5 (mAP 50) of the proposed model increased from 63.6% to 65.8%.
arXiv Detail & Related papers (2024-09-27T15:19:51Z) - Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images [67.66644395272075]
We present first analysis of state-of-the-art semantic segmentation models when faced with geometric out-of-distribution data.
We propose an augmentation technique called "Organ Transplantation" to enhance generalizability.
Our augmentation technique improves SOA model performance by up to 67 % for RGB data and 90 % for HSI data, achieving performance at the level of in-distribution performance on real OOD test data.
arXiv Detail & Related papers (2024-08-27T19:13:15Z) - Global Context Modeling in YOLOv8 for Pediatric Wrist Fracture Detection [0.0]
Children often suffer wrist injuries in daily life, while fracture injuring radiologists need to analyze and interpret X-ray images before surgical treatment.
The development of deep learning has enabled neural network models to work as computer-assisted diagnosis (CAD) tools.
This paper proposes the YOLOv8 model for fracture detection, which is an improved version of the YOLOv8 model with the GC block.
arXiv Detail & Related papers (2024-07-03T14:36:07Z) - YOLOv9 for Fracture Detection in Pediatric Wrist Trauma X-ray Images [0.0]
This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer-assisted diagnosis (CAD)
Experimental results demonstrate that compared to the mAP 50-95 of the current state-of-the-art (SOTA) model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%.
arXiv Detail & Related papers (2024-03-17T15:47:54Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - YOLOv8-AM: YOLOv8 Based on Effective Attention Mechanisms for Pediatric Wrist Fracture Detection [0.0]
This research work proposes YOLOv8-AM, which incorporates the attention mechanism into the original YOLOv8 architecture.
Experimental results demonstrate that the mean Average Precision at IoU 50 (mAP 50) of the YOLOv8-AM model based on ResBlock + CBAM (ResCBAM) increased from 63.6% to 65.8%, which achieves the state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-02-14T17:18:15Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Fracture Detection in Pediatric Wrist Trauma X-ray Images Using YOLOv8
Algorithm [0.2797210504706914]
We use data augmentation to improve the model performance of YOLOv8 algorithm on a pediatric wrist trauma X-ray dataset.
The experimental results show that our model has reached the state-of-the-art mean average precision (mAP 50)
To enable surgeons to use our model for fracture detection on pediatric wrist trauma X-ray images, we have designed the application "Fracture Detection Using YOLOv8 App"
arXiv Detail & Related papers (2023-04-11T09:08:09Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Volumetric Attention for 3D Medical Image Segmentation and Detection [53.041572035020344]
A volumetric attention(VA) module for 3D medical image segmentation and detection is proposed.
VA attention is inspired by recent advances in video processing, enables 2.5D networks to leverage context information along the z direction.
Its integration in the Mask R-CNN is shown to enable state-of-the-art performance on the Liver Tumor (LiTS) Challenge.
arXiv Detail & Related papers (2020-04-04T18:55:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.