Global Context Modeling in YOLOv8 for Pediatric Wrist Fracture Detection
- URL: http://arxiv.org/abs/2407.03163v1
- Date: Wed, 3 Jul 2024 14:36:07 GMT
- Title: Global Context Modeling in YOLOv8 for Pediatric Wrist Fracture Detection
- Authors: Rui-Yang Ju, Chun-Tse Chien, Chia-Min Lin, Jen-Shiun Chiang,
- Abstract summary: Children often suffer wrist injuries in daily life, while fracture injuring radiologists need to analyze and interpret X-ray images before surgical treatment.
The development of deep learning has enabled neural network models to work as computer-assisted diagnosis (CAD) tools.
This paper proposes the YOLOv8 model for fracture detection, which is an improved version of the YOLOv8 model with the GC block.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Children often suffer wrist injuries in daily life, while fracture injuring radiologists usually need to analyze and interpret X-ray images before surgical treatment by surgeons. The development of deep learning has enabled neural network models to work as computer-assisted diagnosis (CAD) tools to help doctors and experts in diagnosis. Since the YOLOv8 models have obtained the satisfactory success in object detection tasks, it has been applied to fracture detection. The Global Context (GC) block effectively models the global context in a lightweight way, and incorporating it into YOLOv8 can greatly improve the model performance. This paper proposes the YOLOv8+GC model for fracture detection, which is an improved version of the YOLOv8 model with the GC block. Experimental results demonstrate that compared to the original YOLOv8 model, the proposed YOLOv8-GC model increases the mean average precision calculated at intersection over union threshold of 0.5 (mAP 50) from 63.58% to 66.32% on the GRAZPEDWRI-DX dataset, achieving the state-of-the-art (SOTA) level. The implementation code for this work is available on GitHub at https://github.com/RuiyangJu/YOLOv8_Global_Context_Fracture_Detection.
Related papers
- Pediatric Wrist Fracture Detection Using Feature Context Excitation Modules in X-ray Images [0.0]
This work introduces four variants of Feature Contexts Excitation-YOLOv8 model, each incorporating a different FCE module.
Experimental results on GRAZPEDWRI-DX dataset demonstrate that our proposed YOLOv8+GC-M3 model improves the mAP@50 value from 65.78% to 66.32%.
Our proposed YOLOv8+SE-M3 model achieves the highest mAP@50 value of 67.07%, exceeding the SOTA performance.
arXiv Detail & Related papers (2024-10-01T19:45:01Z) - YOLOv8-ResCBAM: YOLOv8 Based on An Effective Attention Module for Pediatric Wrist Fracture Detection [0.0]
This paper proposes YOLOv8-ResCBAM, which incorporates Convolutional Block Attention Module integrated with resblock (ResCBAM) into the original YOLOv8 network architecture.
The experimental results on the GRAZPEDWRI-DX dataset demonstrate that the mean Average Precision calculated at Intersection over Union threshold of 0.5 (mAP 50) of the proposed model increased from 63.6% to 65.8%.
arXiv Detail & Related papers (2024-09-27T15:19:51Z) - Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images [67.66644395272075]
We present first analysis of state-of-the-art semantic segmentation models when faced with geometric out-of-distribution data.
We propose an augmentation technique called "Organ Transplantation" to enhance generalizability.
Our augmentation technique improves SOA model performance by up to 67 % for RGB data and 90 % for HSI data, achieving performance at the level of in-distribution performance on real OOD test data.
arXiv Detail & Related papers (2024-08-27T19:13:15Z) - Pediatric Wrist Fracture Detection in X-rays via YOLOv10 Algorithm and Dual Label Assignment System [2.4554686192257424]
This study is the first to evaluate various YOLOv10 variants to assess their performance in detecting pediatric wrist fractures.
It investigates how changes in model complexity, scaling the architecture, and implementing a dual-label assignment strategy can enhance detection performance.
arXiv Detail & Related papers (2024-07-22T14:54:51Z) - YOLOv9 for Fracture Detection in Pediatric Wrist Trauma X-ray Images [0.0]
This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer-assisted diagnosis (CAD)
Experimental results demonstrate that compared to the mAP 50-95 of the current state-of-the-art (SOTA) model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%.
arXiv Detail & Related papers (2024-03-17T15:47:54Z) - YOLOv8-AM: YOLOv8 Based on Effective Attention Mechanisms for Pediatric Wrist Fracture Detection [0.0]
This research work proposes YOLOv8-AM, which incorporates the attention mechanism into the original YOLOv8 architecture.
Experimental results demonstrate that the mean Average Precision at IoU 50 (mAP 50) of the YOLOv8-AM model based on ResBlock + CBAM (ResCBAM) increased from 63.6% to 65.8%, which achieves the state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-02-14T17:18:15Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - RethinkCWS: Is Chinese Word Segmentation a Solved Task? [81.11161697133095]
The performance of the Chinese Word (CWS) systems has gradually reached a plateau with the rapid development of deep neural networks.
In this paper, we take stock of what we have achieved and rethink what's left in the CWS task.
arXiv Detail & Related papers (2020-11-13T11:07:08Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.