論文の概要: Concept Space Alignment in Multilingual LLMs
- arxiv url: http://arxiv.org/abs/2410.01079v1
- Date: Tue, 1 Oct 2024 21:21:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 23:20:41.447026
- Title: Concept Space Alignment in Multilingual LLMs
- Title(参考訳): 多言語LLMにおける概念空間アライメント
- Authors: Qiwei Peng, Anders Søgaard,
- Abstract要約: 一般化は類似の型付けを持つ言語や抽象概念に最適である。
いくつかのモデルでは、プロンプトベースの埋め込みは単語の埋め込みよりもよく整合するが、投影は線形ではない。
- 参考スコア(独自算出の注目度): 47.633314194898134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multilingual large language models (LLMs) seem to generalize somewhat across languages. We hypothesize this is a result of implicit vector space alignment. Evaluating such alignment, we see that larger models exhibit very high-quality linear alignments between corresponding concepts in different languages. Our experiments show that multilingual LLMs suffer from two familiar weaknesses: generalization works best for languages with similar typology, and for abstract concepts. For some models, e.g., the Llama-2 family of models, prompt-based embeddings align better than word embeddings, but the projections are less linear -- an observation that holds across almost all model families, indicating that some of the implicitly learned alignments are broken somewhat by prompt-based methods.
- Abstract(参考訳): 多言語大言語モデル (LLMs) は言語全体にわたって幾分一般化しているようである。
これは暗黙のベクトル空間アライメントの結果であると仮定する。
このようなアライメントを評価すると、より大きなモデルは異なる言語における対応する概念の間に非常に高品質な線形アライメントを示すことが分かる。
本実験により,多言語 LLM は2つの欠点に悩まされていることが明らかとなった。
例えば、Llama-2モデルのファミリでは、プロンプトベースの埋め込みは単語の埋め込みよりもうまく整合するが、プロジェクションはリニアではない。
関連論文リスト
- Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Hyperpolyglot LLMs: Cross-Lingual Interpretability in Token Embeddings [4.2243058640527575]
言語間移動学習は多言語大言語モデル(LLM)の重要な特性である
1)事前学習とモデルアーキテクチャが言語表現に与える影響,2)言語モデルに埋め込まれた言語間表現の応用について検討する。
論文 参考訳(メタデータ) (2023-11-29T19:20:14Z) - Counterfactually Probing Language Identity in Multilingual Models [15.260518230218414]
多言語モデルの内部構造を探索するために, 対実的探索法AlterRepを用いる。
言語 X のテンプレートを考えると、言語 Y が言語 Y の単語の確率を体系的に増加させることが分かる。
論文 参考訳(メタデータ) (2023-10-29T01:21:36Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual
Semantics with Monolingual Corpora [21.78571365050787]
ERNIE-Mは、複数の言語の表現をモノリンガルコーパスと整合させる新しいトレーニング手法である。
単言語コーパス上で擬似並列文ペアを生成し、異なる言語間のセマンティックアライメントの学習を可能にする。
実験結果から,ERNIE-Mは既存の言語間モデルよりも優れており,様々な言語間下流タスクに対して新たな最先端結果を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-31T15:52:27Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - LNMap: Departures from Isomorphic Assumption in Bilingual Lexicon
Induction Through Non-Linear Mapping in Latent Space [17.49073364781107]
バイリンガル語彙誘導のための言語間単語埋め込み学習のための新しい半教師付き手法を提案する。
我々のモデルは同型仮定とは独立であり、2つの独立に訓練されたオートエンコーダの潜在空間における非線形写像を用いる。
論文 参考訳(メタデータ) (2020-04-28T23:28:26Z) - On the Language Neutrality of Pre-trained Multilingual Representations [70.93503607755055]
語彙意味論に関して,多言語文脈埋め込みの言語中立性を直接的に検討する。
その結果、文脈埋め込みは言語ニュートラルであり、概して静的な単語型埋め込みよりも情報的であることがわかった。
本稿では,言語識別における最先端の精度に到達し,並列文の単語アライメントのための統計的手法の性能を一致させる方法について述べる。
論文 参考訳(メタデータ) (2020-04-09T19:50:32Z) - Refinement of Unsupervised Cross-Lingual Word Embeddings [2.4366811507669124]
言語間の単語埋め込みは、高リソース言語と低リソース言語のギャップを埋めることを目的としています。
教師なしバイリンガル単語埋め込みのアライメントを改良する自己教師付き手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T10:39:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。