論文の概要: Panopticus: Omnidirectional 3D Object Detection on Resource-constrained Edge Devices
- arxiv url: http://arxiv.org/abs/2410.01270v1
- Date: Wed, 2 Oct 2024 06:28:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 22:09:02.192059
- Title: Panopticus: Omnidirectional 3D Object Detection on Resource-constrained Edge Devices
- Title(参考訳): Panopticus:資源制約エッジデバイスを用いた全方位3次元物体検出
- Authors: Jeho Lee, Chanyoung Jung, Jiwon Kim, Hojung Cha,
- Abstract要約: 全方位ビューによる3Dオブジェクト検出は、移動ロボットナビゲーションのような安全クリティカルなアプリケーションを可能にする。
Panopticusは、エッジデバイス上の全方位およびカメラベースの3D検出システムである。
Panopticusは33msの厳密な遅延目標から平均62%の精度向上を実現している。
- 参考スコア(独自算出の注目度): 11.14664079107683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D object detection with omnidirectional views enables safety-critical applications such as mobile robot navigation. Such applications increasingly operate on resource-constrained edge devices, facilitating reliable processing without privacy concerns or network delays. To enable cost-effective deployment, cameras have been widely adopted as a low-cost alternative to LiDAR sensors. However, the compute-intensive workload to achieve high performance of camera-based solutions remains challenging due to the computational limitations of edge devices. In this paper, we present Panopticus, a carefully designed system for omnidirectional and camera-based 3D detection on edge devices. Panopticus employs an adaptive multi-branch detection scheme that accounts for spatial complexities. To optimize the accuracy within latency limits, Panopticus dynamically adjusts the model's architecture and operations based on available edge resources and spatial characteristics. We implemented Panopticus on three edge devices and conducted experiments across real-world environments based on the public self-driving dataset and our mobile 360{\deg} camera dataset. Experiment results showed that Panopticus improves accuracy by 62% on average given the strict latency objective of 33ms. Also, Panopticus achieves a 2.1{\times} latency reduction on average compared to baselines.
- Abstract(参考訳): 全方位ビューによる3Dオブジェクト検出は、移動ロボットナビゲーションのような安全クリティカルなアプリケーションを可能にする。
このようなアプリケーションは、リソース制約のあるエッジデバイスでますます動作し、プライバシの懸念やネットワーク遅延のない信頼性の高い処理を容易にする。
低コストの展開を可能にするため、カメラはLiDARセンサーの安価な代替品として広く採用されている。
しかし、エッジデバイスの計算能力の限界のため、カメラベースのソリューションの高性能を実現するための計算集約的な作業負荷は依然として困難である。
本稿では,エッジデバイス上での全方位およびカメラによる3D検出システムであるPanopticusを提案する。
Panopticusでは、空間的複雑さを考慮に入れた適応型マルチブランチ検出方式を採用している。
レイテンシ制限内での精度を最適化するために、Panopticusは利用可能なエッジリソースと空間特性に基づいてモデルのアーキテクチャと操作を動的に調整する。
3つのエッジデバイスにPanopticusを実装し、パブリックな自動運転データセットとモバイルの360{\deg}カメラデータセットに基づいて、実環境にわたって実験を行った。
実験の結果,33msの厳密な遅延目標から,Panopticusの精度は平均62%向上した。
また、Panopticusはベースラインと比較して平均2.1{\times}レイテンシの削減を実現している。
関連論文リスト
- CamLoPA: A Hidden Wireless Camera Localization Framework via Signal Propagation Path Analysis [59.86280992504629]
CamLoPAは、トレーニング不要の無線カメラ検出およびローカライゼーションフレームワークである。
低コストの商用オフ・ザ・シェルフ(COTS)デバイスを使用して、最小限の活動空間制約で運用する。
95.37%のスヌーピングカメラ検出精度と17.23の平均位置誤差を達成する。
論文 参考訳(メタデータ) (2024-09-23T16:23:50Z) - RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments [62.5830455357187]
我々は3種類のセンサー(Camera, LiDAR, Fisheye)をベースとした自我中心型マルチセンサデータ収集プラットフォームを構築した。
大規模なマルチモーダルデータセットであるRoboSenseは、エゴセントリックなロボット知覚を促進するために構築されている。
論文 参考訳(メタデータ) (2024-08-28T03:17:40Z) - Moby: Empowering 2D Models for Efficient Point Cloud Analytics on the
Edge [11.588467580653608]
3Dオブジェクト検出は多くのアプリケーションにおいて重要な役割を担っている。
計算能力が限られているため、高度に複雑なニューラルネットワークを用いてエッジ上で3D検出を実行することは困難である。
クラウドへのオフロードのような一般的なアプローチは、送信中の大量のポイントクラウドデータのために、大きな遅延オーバーヘッドを引き起こす。
提案するMobyは,我々のアプローチの実現可能性と可能性を示す新しいシステムである。
論文 参考訳(メタデータ) (2023-02-18T03:42:31Z) - FastPillars: A Deployment-friendly Pillar-based 3D Detector [63.0697065653061]
既存のBEVベースの(つまりバードアイビュー)検出器は、トレーニングと推論を高速化するためにスパース・コンボリューション(SPConv)を好む。
FastPillarsは、CenterPoint(SPConvベース)よりも1.8倍のスピードアップと3.8mAPH/L2の改善で、Openデータセットの最先端の精度を提供する
論文 参考訳(メタデータ) (2023-02-05T12:13:27Z) - 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object
Detection on Edge for Intelligent Transportation System [28.55894241049706]
本稿では,ポイントクラウドに基づく不整合予測を緩和する3次元高調波損失関数を提案する。
提案手法はベンチマークモデルよりも性能が大幅に向上する。
私たちのコードはオープンソースで公開されています。
論文 参考訳(メタデータ) (2022-11-07T10:11:48Z) - A Flexible-Frame-Rate Vision-Aided Inertial Object Tracking System for
Mobile Devices [3.4836209951879957]
本稿では,モバイルデバイス用フレキシブルフレームレートオブジェクトポーズ推定とトラッキングシステムを提案する。
高速トラッキングのためにクライアント側で慣性計測ユニット(IMU)ポーズ伝搬を行い、サーバ側でRGB画像ベースの3Dポーズ推定を行う。
我々のシステムは120FPSまでのフレキシブルフレームレートをサポートし、ローエンドデバイス上での高精度かつリアルタイムなトラッキングを保証する。
論文 参考訳(メタデータ) (2022-10-22T15:26:50Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
予備的バイナリフレーム分類を用いた物体検出のためのニューラルネットワークの最適化アルゴリズムを提案する。
周囲に6台のローリングシャッターカメラを備えた自律移動ロボットを360度視野として実験装置として使用した。
論文 参考訳(メタデータ) (2021-10-22T15:05:37Z) - Achieving Real-Time Object Detection on MobileDevices with Neural
Pruning Search [45.20331644857981]
本稿では,2次元および3次元物体検出のための自律走行車における高速推論を実現するために,コンパイラ対応のニューラルプルーニング検索フレームワークを提案する。
提案手法は, YOLOv4 を用いた2次元物体検出と PointPillars による3次元物体検出において, 実時間, 55ms および 99ms の推論時間を実現する。
論文 参考訳(メタデータ) (2021-06-28T18:59:20Z) - Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device [53.323878851563414]
本稿では,強化学習技術を用いたネットワーク拡張とpruning検索を組み込んだコンパイラ対応統一フレームワークを提案する。
具体的には,リカレントニューラルネットワーク(RNN)を用いて,ネットワークの強化とプルーニングの両面での統一的なスキームを自動で提供する。
提案手法は,モバイルデバイス上でのリアルタイム3次元物体検出を実現する。
論文 参考訳(メタデータ) (2020-12-26T19:41:15Z) - YOLOpeds: Efficient Real-Time Single-Shot Pedestrian Detection for Smart
Camera Applications [2.588973722689844]
この研究は、スマートカメラアプリケーションにおけるディープラーニングに基づく歩行者検出の効率的な展開のために、精度と速度の良好なトレードオフを達成するという課題に対処する。
分離可能な畳み込みに基づいて計算効率の良いアーキテクチャを導入し、層間密結合とマルチスケール機能融合を提案する。
全体として、YOLOpedsは、既存のディープラーニングモデルよりも86%の速度で、毎秒30フレーム以上のリアルタイム持続的な操作を提供する。
論文 参考訳(メタデータ) (2020-07-27T09:50:11Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
モバイルエッジデバイスの限られたストレージとコンピューティング能力を満たすために、ディープニューラルネットワーク(DNN)の軽量プルーニングが提案されている。
従来のプルーニング手法は主に、ユーザデータのプライバシを考慮せずに、モデルのサイズを減らしたり、パフォーマンスを向上させることに重点を置いていた。
プライベートトレーニングデータセットを必要としないプライバシ保護指向のプルーニングおよびモバイルアクセラレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-13T23:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。