論文の概要: Deep learning for action spotting in association football videos
- arxiv url: http://arxiv.org/abs/2410.01304v1
- Date: Wed, 2 Oct 2024 07:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:59:16.066615
- Title: Deep learning for action spotting in association football videos
- Title(参考訳): サッカービデオにおけるアクションスポッティングの深層学習
- Authors: Silvio Giancola, Anthony Cioppa, Bernard Ghanem, Marc Van Droogenbroeck,
- Abstract要約: SoccerNetイニシアチブは毎年の課題を組織し、世界中の参加者が最先端のパフォーマンスを達成するために競う。
本稿では,スポーツにおけるアクションスポッティングの歴史を,2018年の課題の創出から,現在の研究・スポーツ産業における役割まで遡る。
- 参考スコア(独自算出の注目度): 64.10841325879996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of action spotting consists in both identifying actions and precisely localizing them in time with a single timestamp in long, untrimmed video streams. Automatically extracting those actions is crucial for many sports applications, including sports analytics to produce extended statistics on game actions, coaching to provide support to video analysts, or fan engagement to automatically overlay content in the broadcast when specific actions occur. However, before 2018, no large-scale datasets for action spotting in sports were publicly available, which impeded benchmarking action spotting methods. In response, our team built the largest dataset and the most comprehensive benchmarks for sports video understanding, under the umbrella of SoccerNet. Particularly, our dataset contains a subset specifically dedicated to action spotting, called SoccerNet Action Spotting, containing more than 550 complete broadcast games annotated with almost all types of actions that can occur in a football game. This dataset is tailored to develop methods for automatic spotting of actions of interest, including deep learning approaches, by providing a large amount of manually annotated actions. To engage with the scientific community, the SoccerNet initiative organizes yearly challenges, during which participants from all around the world compete to achieve state-of-the-art performances. Thanks to our dataset and challenges, more than 60 methods were developed or published over the past five years, improving on the first baselines and making action spotting a viable option for the sports industry. This paper traces the history of action spotting in sports, from the creation of the task back in 2018, to the role it plays today in research and the sports industry.
- Abstract(参考訳): アクションスポッティングのタスクは、アクションの識別と、タイムスタンプを1つのタイムスタンプで、長く、トリミングされていないビデオストリームで正確に位置決めすることの両方から成り立っている。
これらのアクションを自動的に抽出することは、スポーツ分析がゲームアクションに関する広範な統計データを生成すること、ビデオアナリストのサポートを提供するコーチング、特定のアクションが発生したときに放送中のコンテンツを自動的にオーバーレイするファンエンゲージメントなど、多くのスポーツアプリケーションにとって重要である。
しかし、2018年以前、スポーツにおけるアクションスポッティングのための大規模なデータセットは公開されておらず、ベンチマークアクションスポッティングの方法が妨げられた。
これに対し、私たちのチームは、サッカーネットの傘下で、最大のデータセットと、スポーツビデオ理解のための最も包括的なベンチマークを構築しました。
特に、我々のデータセットには、アクションスポッティングに特化したサブセットが含まれており、フットボールの試合で起こりうるほとんどすべてのアクションが注釈付けされた550以上の完全なブロードキャストゲームを含んでいる。
このデータセットは、大量の手動で注釈付けされたアクションを提供することで、ディープラーニングアプローチを含む、興味のあるアクションを自動的にスポッティングする方法を開発するように調整されている。
科学コミュニティに参加するために、サッカーネットイニシアチブは毎年の課題を組織し、世界中の参加者が最先端のパフォーマンスを達成するために競う。
われわれのデータセットと課題のおかげで、過去5年間に60以上の方法が開発または公開された。
本稿では,スポーツにおけるアクションスポッティングの歴史を,2018年の課題の創出から,現在研究やスポーツ業界で果たす役割まで遡る。
関連論文リスト
- Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
フットボールビデオの分析は困難であり、微妙で多様な時間的パターンを特定する必要がある。
現在のアルゴリズムは、限られた注釈付きデータから学ぶ際に大きな課題に直面している。
次にアノテートすべき最も情報に富んだビデオサンプルを選択する能動的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-09T11:50:41Z) - Sport Task: Fine Grained Action Detection and Classification of Table
Tennis Strokes from Videos for MediaEval 2022 [0.9894420655516565]
本課題は,スポーツビデオから微妙な動きを検出し,分類することである。
私たちは卓球の試合の記録に重点を置いている。
2021年以降、このタスクは、注釈のない未修正ビデオからのストローク検出にも挑戦している。
論文 参考訳(メタデータ) (2023-01-31T12:03:59Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
アクションスポッティングには、ゲームのダイナミクス、イベントの複雑さ、ビデオシーケンスのバリエーションを理解することが含まれる。
本研究では, (a) 選手, 審判, ゴールキーパーをグラフのノードとして識別し, および (b) 時間的相互作用をグラフのシーケンスとしてモデル化することによって, 前者に焦点を当てる。
プレーヤ識別タスクでは,他のモダリティと組み合わせることで,平均mAPの57.83%の総合的な性能が得られる。
論文 参考訳(メタデータ) (2022-11-22T15:23:53Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
本稿では,スポーツ分析のための映像行動認識に関する調査を行う。
サッカー、バスケットボール、バレーボール、ホッケー、フィギュアスケート、体操、卓球、ダイビング、バドミントンなど10種以上のスポーツを紹介します。
本研究では,サッカー,バスケットボール,卓球,フィギュアスケート動作認識をサポートするPaddlePaddleを用いたツールボックスを開発した。
論文 参考訳(メタデータ) (2022-06-02T13:19:36Z) - Sports Video: Fine-Grained Action Detection and Classification of Table
Tennis Strokes from Videos for MediaEval 2021 [0.0]
このタスクは、ビデオからのきめ細かいアクション検出と分類に取り組む。
主に卓球の試合の記録に焦点が当てられている。
本研究は,スポーツのパフォーマンスを解析するために,スポーツコーチや選手のためのツールを作成することを目的としている。
論文 参考訳(メタデータ) (2021-12-16T10:17:59Z) - MultiSports: A Multi-Person Video Dataset of Spatio-Temporally Localized
Sports Actions [39.27858380391081]
本論文では、マルチスポーツとして作成された原子時間行動の新しいマルチパーソンデータセットを提示する。
4つのスポーツクラスを選択し、約3200のビデオクリップを収集し、37790のアクションインスタンスに907kバウンディングボックスをアノテートすることで、MultiSports v1.0のデータセットを構築します。
論文 参考訳(メタデータ) (2021-05-16T10:40:30Z) - Temporally-Aware Feature Pooling for Action Spotting in Soccer
Broadcasts [86.56462654572813]
私たちは、サッカーの試合の主なアクションを一時的にローカライズするサッカー放送におけるアクションスポッティングの分析に焦点を当てています。
時間的知識を組み込んだNetVLAD++という,NetVLADに基づく新たな機能プーリング手法を提案する。
我々は最近の大規模データセット SoccerNet-v2 の方法論をトレーニングし、評価し、アクションスポッティングのための平均平均mAP 53.4% に達した。
論文 参考訳(メタデータ) (2021-04-14T11:09:03Z) - SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of
Broadcast Soccer Videos [71.72665910128975]
SoccerNet-v2 は SoccerNet ビデオデータセット用の手動アノテーションの大規模なコーパスである。
SoccerNetの500の未トリミングサッカービデオの中で、約300万のアノテーションをリリースしています。
サッカーの領域における現在のタスクを拡張し、アクションスポッティング、カメラショットセグメンテーション、境界検出を含む。
論文 参考訳(メタデータ) (2020-11-26T16:10:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。