Sharp electromagnetically induced absorption via balanced interferometric excitation in a microwave resonator
- URL: http://arxiv.org/abs/2410.01333v3
- Date: Thu, 06 Feb 2025 03:34:58 GMT
- Title: Sharp electromagnetically induced absorption via balanced interferometric excitation in a microwave resonator
- Authors: Michael Hatzon, Graeme Flower, Maxim Goryachev, Jeremy Bourhill, Michael E. Tobar,
- Abstract summary: This work presents an experimental setup that will allow the electric-scalar Aharonov-Bohm effect to be tested without the presence of an electric field or magnetic vector potential.
- Score: 0.0
- License:
- Abstract: A cylindrical TM$_{0,1,0}$ mode microwave cavity resonator was excited using a balanced interferometric configuration that allowed manipulation of the electric field and potential within the resonator by adjusting the phase and amplitude of the interferometer arms driving the resonator. With precise tuning of the phase and amplitude, 25 dB suppression of the electric field at the resonance frequency was achieved while simultaneously resonantly enhancing the time-varying electric-scalar potential. Under these conditions, the system demonstrated electromagnetically induced absorption in the cavity response due to the annulment of the electric field at the resonance frequency. This phenomena can be regarded as a form of extreme dispersion, and led to a sharp increase in the cavity phase versus frequency response by an order of magnitude when compared to the cavity Q-factor. This work presents an experimental setup that will allow the electric-scalar Aharonov-Bohm effect to be tested under conditions involving a time-varying electric-scalar potential, without the presence of an electric field or magnetic vector potential, an experiment that has not yet been realised.
Related papers
- Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Latched Detection of Zeptojoule Spin Echoes with a Kinetic Inductance
Parametric Oscillator [0.0]
We operate a detector based on a superconducting microwave resonator.
The device indicates the absorption of low-power microwave wavepackets by transitioning to a self-oscillating state.
We achieve a latched-readout of the spin signal with an amplitude that is five hundred times greater than the underlying spin echoes.
arXiv Detail & Related papers (2023-11-07T03:55:15Z) - Quantum control of ro-vibrational dynamics and application to
light-induced molecular chirality [39.58317527488534]
Achiral molecules can be made temporarily chiral by excitation with electric fields.
We go beyond the assumption of molecular orientations to remain fixed during the excitation process.
arXiv Detail & Related papers (2023-10-17T20:33:25Z) - Acoustic radiation from a superconducting qubit: From spontaneous
emission to Rabi oscillations [0.0]
We study the dynamics of a qubit coupled to an acoustic resonator by a piezoelectric film.
By varying the surface topography of the resonator, we explore the crossover from fast decay of an excited qubit to quantum-coherent coupling.
arXiv Detail & Related papers (2022-11-14T16:00:25Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Entanglement between charge qubit states and coherent states of
nanomechanical resonator generated by AC Josephson effect [0.0]
We consider a nanoelectromechanical system consisting of a movable Cooper-pair box qubit which is subject to an electrostatic field.
bias voltage applied between superconductors generates states represented by the entanglement of qubit states.
It is shown that a structure of this entanglement may be controlled by the bias voltage in a way that gives rise to the entanglement so-called cat-states.
arXiv Detail & Related papers (2021-12-01T00:59:12Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Quantum theory of two-dimensional materials coupled to electromagnetic
resonators [0.0]
We present a microscopic quantum theory of light-matter interaction in pristine sheets of two-dimensional semiconductors coupled to localized electromagnetic resonators.
The light-matter interaction breaks the translation symmetry of excitons in the two-dimensional lattice, and we find that this symmetry-breaking interaction leads to the formation of a localized exciton state.
We quantify the influence of the environment and find that it is most pronounced for small lateral confinement length scales of the electromagnetic field in the resonator.
arXiv Detail & Related papers (2021-03-26T14:25:57Z) - Study of electronic properties, Magnetization and persistent currents in
a mesoscopic ring by controlled curvature [1.7637225649382287]
We study the model of a noninteracting spinless electron gas confined to the two-dimensional localized surface of a cone in the presence of external magnetic fields.
We write the Schr"odinger equation and use the thin-layer quantization procedure to calculate the wavefunctions and the energy spectrum.
arXiv Detail & Related papers (2020-05-03T00:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.