論文の概要: Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models
- arxiv url: http://arxiv.org/abs/2410.01335v1
- Date: Wed, 2 Oct 2024 08:53:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:39:21.873009
- Title: Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models
- Title(参考訳): 大規模言語モデルにおけるゼロショット言語間移動のための層スワッピング
- Authors: Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj, Rui Hou, Nayan Singhal, Hongjiang Lv, Bing Liu,
- Abstract要約: 本研究では,非英語言語における目標課題に対するLLM(Large Language Models)の微調整の難しさに対処するモデルマージ手法を提案する。
我々は、英語の数学の命令データと対象言語の汎用的な命令データに「専門家」を微調整する。
我々は、数学の専門家の上位と下位のトランスフォーマー層を直接言語専門家の層に置き換え、それによって対象言語の数学性能が向上する。
- 参考スコア(独自算出の注目度): 12.424072830053445
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Model merging, such as model souping, is the practice of combining different models with the same architecture together without further training. In this work, we present a model merging methodology that addresses the difficulty of fine-tuning Large Language Models (LLMs) for target tasks in non-English languages, where task-specific data is often unavailable. We focus on mathematical reasoning and without in-language math data, facilitate cross-lingual transfer by composing language and math capabilities. Starting from the same pretrained model, we fine-tune separate "experts" on math instruction data in English and on generic instruction data in the target language. We then replace the top and bottom transformer layers of the math expert directly with layers from the language expert, which consequently enhances math performance in the target language. The resulting merged models outperform the individual experts and other merging methods on the math benchmark, MGSM, by 10% across four major languages where math instruction data is scarce. In addition, this layer swapping is simple, inexpensive, and intuitive, as it is based on an interpretative analysis of the most important parameter changes during the fine-tuning of each expert. The ability to successfully re-compose LLMs for cross-lingual transfer in this manner opens up future possibilities to combine model expertise, create modular solutions, and transfer reasoning capabilities across languages all post hoc.
- Abstract(参考訳): モデルマージ(モデルマージング)は、モデルスープング(英語版)のようなモデルマージ(英語版)は、異なるモデルと同じアーキテクチャを更なるトレーニングなしで組み合わせるプラクティスである。
本研究では,タスク固有のデータがしばしば利用できない非英語言語における目的タスクに対して,LLM(Large Language Models)を微調整することの難しさに対処するモデルマージ手法を提案する。
我々は、数学的推論に焦点をあて、言語と数学の機能を構成することで言語間移動を容易にする。
同じ事前学習モデルから、英語の数学の命令データと対象言語の汎用的な命令データに「専門家」を微調整する。
次に、数学の専門家の上位と下位のトランスフォーマー層を直接言語専門家のレイヤーに置き換え、それによって対象言語の数学性能が向上する。
その結果、マージされたモデルは、数学の訓練データが不足している4つの主要言語で、個々の専門家や他のマージ手法であるMGSMを10%上回った。
さらに、このレイヤスワップは、各専門家の微調整中の最も重要なパラメータの変化の解釈分析に基づいて、シンプルで安価で直感的なものである。
この方法でLLMを再構成して言語間転送を成功させる能力は、モデル専門知識を組み合わせたり、モジュール化されたソリューションを作成したり、すべての言語間で推論機能を伝達する将来の可能性を開くものだ。
関連論文リスト
- Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
大規模言語モデル(LLM)は近年,多種多様な言語関連タスクに多大な影響を与えている。
本稿では,複数のLLMを比較した機械翻訳タスクに特化して,コード切替タスクについて広範な研究を行う。
以上の結果から,LLMは特定のタスクに有望な結果をもたらすにもかかわらず,機械翻訳タスクにおける多言語大言語モデルよりも比較的少ない複雑性を持つモデルの方が優れていることが示唆された。
論文 参考訳(メタデータ) (2023-12-20T16:40:33Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Cross-Lingual Text Classification with Multilingual Distillation and
Zero-Shot-Aware Training [21.934439663979663]
多言語事前学習言語モデル(MPLM)に基づくマルチブランチ多言語言語モデル(MBLM)
教師学習フレームワークを用いた高性能単言語モデルからの知識の伝達に基づく方法
2つの言語横断型分類タスクの結果から,MPLMの教師付きデータのみを用いることで,教師付き性能とゼロショット性能が向上することが示された。
論文 参考訳(メタデータ) (2022-02-28T09:51:32Z) - Multitask Prompted Training Enables Zero-Shot Task Generalization [70.12770442071657]
本研究では,一般的な自然言語タスクを人間に読まれる入力形式にマッピングするシステムを開発した。
様々なタスクをカバーしたマルチタスクミックス上に,事前学習したエンコーダ・デコーダモデルを微調整する。
このモデルは、いくつかの標準データセット上で強力なゼロショット性能を達成し、しばしば16倍のサイズのモデルより優れている。
論文 参考訳(メタデータ) (2021-10-15T17:08:57Z) - Mixed Attention Transformer for LeveragingWord-Level Knowledge to Neural
Cross-Lingual Information Retrieval [15.902630454568811]
本稿では,辞書や翻訳表などの外部単語レベルの知識を取り入れた,MAT(Mixed Attention Transformer)を提案する。
翻訳知識をアテンションマトリックスに符号化することにより、MATを用いたモデルは、入力シーケンス内の相互翻訳された単語にフォーカスすることができる。
論文 参考訳(メタデータ) (2021-09-07T00:33:14Z) - Adapting Monolingual Models: Data can be Scarce when Language Similarity
is High [3.249853429482705]
ゼロショット転送学習の性能を,可能な限り少ないデータで検証する。
我々は、低リソースターゲット言語2種類のデータを用いて、BERTベースの4つのモデルの語彙層を再学習する。
高言語的類似性により、10MBのデータは、実質的なモノリンガル転送性能を達成するのに十分である。
論文 参考訳(メタデータ) (2021-05-06T17:43:40Z) - Multilingual Transfer Learning for QA Using Translation as Data
Augmentation [13.434957024596898]
我々は,多言語組込みを意味空間に近づけることで,言語間伝達を改善する戦略を検討する。
言語敵対的トレーニングと言語仲裁フレームワークという2つの新しい戦略を提案し、(ゼロリソースの)クロスリンガルトランスファーのパフォーマンスを大幅に改善します。
実験により,提案モデルは,最近導入された多言語MLQAデータセットとTyDiQAデータセットにおいて,以前のゼロショットベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-10T20:29:34Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。