Cognition Transferring and Decoupling for Text-supervised Egocentric Semantic Segmentation
- URL: http://arxiv.org/abs/2410.01341v1
- Date: Wed, 2 Oct 2024 08:58:34 GMT
- Title: Cognition Transferring and Decoupling for Text-supervised Egocentric Semantic Segmentation
- Authors: Zhaofeng Shi, Heqian Qiu, Lanxiao Wang, Fanman Meng, Qingbo Wu, Hongliang Li,
- Abstract summary: Egocentic Semantic (TESS) task aims to assign pixel-level categories to egocentric images weakly supervised by texts from image-level labels.
We propose a Cognition Transferring and Decoupling Network (CTDN) that first learns the egocentric wearer-object relations via correlating the image and text.
- Score: 17.35953923039954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore a novel Text-supervised Egocentic Semantic Segmentation (TESS) task that aims to assign pixel-level categories to egocentric images weakly supervised by texts from image-level labels. In this task with prospective potential, the egocentric scenes contain dense wearer-object relations and inter-object interference. However, most recent third-view methods leverage the frozen Contrastive Language-Image Pre-training (CLIP) model, which is pre-trained on the semantic-oriented third-view data and lapses in the egocentric view due to the ``relation insensitive" problem. Hence, we propose a Cognition Transferring and Decoupling Network (CTDN) that first learns the egocentric wearer-object relations via correlating the image and text. Besides, a Cognition Transferring Module (CTM) is developed to distill the cognitive knowledge from the large-scale pre-trained model to our model for recognizing egocentric objects with various semantics. Based on the transferred cognition, the Foreground-background Decoupling Module (FDM) disentangles the visual representations to explicitly discriminate the foreground and background regions to mitigate false activation areas caused by foreground-background interferential objects during egocentric relation learning. Extensive experiments on four TESS benchmarks demonstrate the effectiveness of our approach, which outperforms many recent related methods by a large margin. Code will be available at https://github.com/ZhaofengSHI/CTDN.
Related papers
- Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - Contrastive Object-level Pre-training with Spatial Noise Curriculum
Learning [12.697842097171119]
We present a curriculum learning mechanism that adaptively augments the generated regions, which allows the model to consistently acquire a useful learning signal.
Our experiments show that our approach improves on the MoCo v2 baseline by a large margin on multiple object-level tasks when pre-training on multi-object scene image datasets.
arXiv Detail & Related papers (2021-11-26T18:29:57Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Rethinking of the Image Salient Object Detection: Object-level Semantic
Saliency Re-ranking First, Pixel-wise Saliency Refinement Latter [62.26677215668959]
We propose a lightweight, weakly supervised deep network to coarsely locate semantically salient regions.
We then fuse multiple off-the-shelf deep models on these semantically salient regions as the pixel-wise saliency refinement.
Our method is simple yet effective, which is the first attempt to consider the salient object detection mainly as an object-level semantic re-ranking problem.
arXiv Detail & Related papers (2020-08-10T07:12:43Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z) - Semantics-Driven Unsupervised Learning for Monocular Depth and
Ego-Motion Estimation [33.83396613039467]
We propose a semantics-driven unsupervised learning approach for monocular depth and ego-motion estimation from videos.
Recent unsupervised learning methods employ photometric errors between synthetic view and actual image as a supervision signal for training.
arXiv Detail & Related papers (2020-06-08T05:55:07Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-saliency detection (Co-SOD) aims to segment the common salient foreground in a group of relevant images.
In this paper, inspired by human behavior, we propose a gradient-induced co-saliency detection method.
arXiv Detail & Related papers (2020-04-28T08:40:55Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.