論文の概要: Quantifying Cancer Likeness: A Statistical Approach for Pathological Image Diagnosis
- arxiv url: http://arxiv.org/abs/2410.01391v1
- Date: Wed, 2 Oct 2024 09:57:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:19:25.893301
- Title: Quantifying Cancer Likeness: A Statistical Approach for Pathological Image Diagnosis
- Title(参考訳): 癌類似性の定量化 : 病理画像診断への統計的アプローチ
- Authors: Toshiki Kindo,
- Abstract要約: 提案手法は,エビデンスベースの医学に基づく統計理論に基づいて構築される。
本手法は癌分類タスクにおいて0.95以上の区切りAUCを実現する。
- 参考スコア(独自算出の注目度): 2.44755919161855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a new statistical approach to automatically identify cancer regions in pathological images. The proposed method is built from statistical theory in line with evidence-based medicine. The two core technologies are the classification information of image features, which was introduced based on information theory and which cancer features take positive values, normal features take negative values, and the calculation technique for determining their spatial distribution. This method then estimates areas where the classification information content shows a positive value as cancer areas in the pathological image. The method achieves AUCs of 0.95 or higher in cancer classification tasks. In addition, the proposed method has the practical advantage of not requiring a precise demarcation line between cancer and normal. This frees pathologists from the monotonous and tedious work of building consensus with other pathologists.
- Abstract(参考訳): 本稿では,病理画像中の癌領域を自動的に同定する新しい統計手法を提案する。
提案手法は,エビデンスベースの医学に基づく統計理論に基づいて構築される。
2つの中心となる技術は画像の特徴の分類情報であり、それは情報理論に基づいて導入され、がんの特徴が正の値を取るか、正常特徴が負の値を取るか、空間分布を決定するための計算技術である。
次に、分類情報内容が病理画像中の癌領域として正の値を示す領域を推定する。
この方法はがん分類タスクにおいて0.95以上のAUCを達成する。
さらに, 本手法は, 癌と正常の正確な境界線を必要としないという実用的利点がある。
これにより、病理学者は、他の病理学者とのコンセンサスを構築するという単調で退屈な作業から解放される。
関連論文リスト
- Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example [40.3927727959038]
本稿では,画像の高速分類に畳み込みニューラルネットワーク(CNN)を用いる手法を提案する。
病理像を良性群と悪性群に迅速かつ自動分類することができる。
本手法は乳がんの病理像の分類における精度を効果的に向上することを示す。
論文 参考訳(メタデータ) (2024-04-12T07:08:05Z) - Heterogeneous Image-based Classification Using Distributional Data
Analysis [0.1471145775252885]
画素レベルの特徴の確率(量子)分布を組み込んだ新しい画像ベース分布データ解析(DDA)手法を開発した。
提案手法の特徴として, (i) 画像内の不均一性を考慮し, (ii) 分布全体にわたる粒度の情報を取り込み, (iii) がん応用における未登録画像に対する画像サイズの変化に対処する能力がある。
論文 参考訳(メタデータ) (2024-03-11T19:41:40Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Gene selection from microarray expression data: A Multi-objective PSO
with adaptive K-nearest neighborhood [0.0]
本稿では,遺伝子発現データを用いたヒト癌疾患の分類問題について論じる。
マイクロアレイデータセットを解析し,がん疾患を効果的に分類するための新しい手法を提案する。
論文 参考訳(メタデータ) (2022-05-27T04:22:10Z) - Mammograms Classification: A Review [0.0]
マンモグラム画像はコンピュータ支援診断システムの開発に利用されてきた。
研究者たちは、人工知能が病気の早期発見に利用できることを証明した。
論文 参考訳(メタデータ) (2022-03-04T19:22:35Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
癌ゲノム情報に含まれる情報を新しいトポロジに基づくアプローチで捉える可能性を探る。
本手法は, 癌体性遺伝データに有意な低次元表現を抽出する可能性を秘めている。
論文 参考訳(メタデータ) (2020-11-22T17:31:23Z) - Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype
Classification with Unannotated Histopathological Images [16.02231907106384]
我々は,マルチインスタンス,ドメイン逆数,マルチスケール学習フレームワークを効果的に組み合わせ,CNNに基づく癌サブタイプ分類法を開発した。
分類性能は標準のCNNや他の従来の方法よりも有意に優れており, 精度は標準の病理医と比較して良好であった。
論文 参考訳(メタデータ) (2020-01-06T14:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。