論文の概要: SinkSAM: A Monocular Depth-Guided SAM Framework for Automatic Sinkhole Segmentation
- arxiv url: http://arxiv.org/abs/2410.01473v1
- Date: Wed, 2 Oct 2024 12:23:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 17:34:40.182007
- Title: SinkSAM: A Monocular Depth-Guided SAM Framework for Automatic Sinkhole Segmentation
- Title(参考訳): SinkSAM: 自動シンクホールセグメンテーションのための単眼深度ガイド付きSAMフレームワーク
- Authors: Osher Rafaeli, Tal Svoray, Ariel Nahlieli,
- Abstract要約: 本稿では, 閉鎖型うつ病の従来の地形計算と, SAM(Segment Anything Model)を併用したシンクホールセグメンテーションの枠組みを提案する。
1) SAMとのトポグラフィ計算の統合により,シンクホール境界セグメンテーションのピクセルレベル改善が可能,(2) クローズド・プレッションに基づくコヒーレントな数学的プロンプト戦略は,未定義のシンクホール特徴の検出とセグメンテーションにおける純粋学習モデル(CNN)の限界に対処する,(3) ディープス・エキサイティングV2を用いた自動プロンプトは,光グラム量バイアスを排除し,LiDARデータに依存しないシンクホールマッピングを可能にする,(4) 確立されたシンクホールデータベースは,微細化を容易にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Soil sinkholes significantly influence soil degradation, but their irregular shapes, along with interference from shadow and vegetation, make it challenging to accurately quantify their properties using remotely sensed data. We present a novel framework for sinkhole segmentation that combines traditional topographic computations of closed depressions with the newly developed prompt-based Segment Anything Model (SAM). Within this framework, termed SinkSAM, we highlight four key improvements: (1) The integration of topographic computations with SAM enables pixel-level refinement of sinkhole boundaries segmentation; (2) A coherent mathematical prompting strategy, based on closed depressions, addresses the limitations of purely learning-based models (CNNs) in detecting and segmenting undefined sinkhole features, while improving generalization to new, unseen regions; (3) Using Depth Anything V2 monocular depth for automatic prompts eliminates photogrammetric biases, enabling sinkhole mapping without the dependence on LiDAR data; and (4) An established sinkhole database facilitates fine-tuning of SAM, improving its zero-shot performance in sinkhole segmentation. These advancements allow the deployment of SinkSAM, in an unseen test area, in the highly variable semiarid region, achieving an intersection-over-union (IoU) of 40.27\% and surpassing previous results. This paper also presents the first SAM implementation for sinkhole segmentation and demonstrates the robustness of SinkSAM in extracting sinkhole maps using a single RGB image.
- Abstract(参考訳): 土壌シンクホールは土壌の劣化に大きく影響するが、その不規則な形状は影や植生からの干渉とともに、リモートセンシングデータを用いてその特性を正確に定量化することは困難である。
本稿では, 閉鎖型うつ病の従来の地形計算と, SAM(Segment Anything Model)を併用したシンクホールセグメンテーションの枠組みを提案する。
SinkSAM と呼ばれるこのフレームワークでは,(1) SAM とのトポグラフィ計算の統合により,シンクホール境界セグメンテーションのピクセルレベル改善が可能になること,(2) クローズドプレッションに基づくコヒーレントな数学的プロンプト戦略は,未定義のシンクホール特徴の検出とセグメンテーションにおける純粋学習モデル(CNN)の限界に対処すること,(3) 自動プロンプトにDepth Anything V2 の単分子深度を用いることで,光グラム量バイアスを排除し,LiDAR データに依存することなくシンクホールマッピングを可能にすること,(4) 既存のシンクホールデータベースは,シンクホール境界セグメンテーションを微調整し,そのゼロショット性能を向上させる。
これらの進歩により、SinkSAMは、高度に可変なセミアリド領域で、40.27\%のインターチェンジ・オーバー・ユニオン(IoU)を達成し、以前の結果を上回った。
また,1枚のRGB画像からシンクホールマップを抽出する際のSinkSAMのロバスト性を示す。
関連論文リスト
- Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - Mesh Denoising Transformer [104.5404564075393]
Mesh Denoisingは、入力メッシュからノイズを取り除き、特徴構造を保存することを目的としている。
SurfaceFormerはTransformerベースのメッシュDenoisingフレームワークのパイオニアだ。
局所曲面記述子(Local Surface Descriptor)として知られる新しい表現は、局所幾何学的複雑さをキャプチャする。
Denoising Transformerモジュールは、マルチモーダル情報を受信し、効率的なグローバル機能アグリゲーションを実現する。
論文 参考訳(メタデータ) (2024-05-10T15:27:43Z) - SAM-Assisted Remote Sensing Imagery Semantic Segmentation with Object
and Boundary Constraints [9.238103649037951]
本稿では,SAM生成オブジェクト(SGO)とSAM生成境界(SGB)という2つの新しい概念を活用することにより,SAMの生出力を活用するフレームワークを提案する。
本稿では,SGOのコンテンツ特性を考慮し,セマンティックな情報を持たないセグメンテーション領域を活用するために,オブジェクト整合性の概念を導入する。
境界損失は、モデルが対象の境界情報に注意を向けることによって、SGBの特徴的な特徴に重きを置いている。
論文 参考訳(メタデータ) (2023-12-05T03:33:47Z) - Zero-Shot Refinement of Buildings' Segmentation Models using SAM [6.110856077714895]
本稿では,既存モデルの一般化損失に対処するために基礎モデルを適用する新しいアプローチを提案する。
いくつかのモデルの中で、私たちはSegment Anything Model(SAM)に焦点を当てています。
SAMは認識機能を提供しないので、ローカライズされたオブジェクトの分類とタグ付けに失敗する。
この新しいアプローチはSAMを認識能力で強化する。
論文 参考訳(メタデータ) (2023-10-03T07:19:59Z) - Background Activation Suppression for Weakly Supervised Object
Localization and Semantic Segmentation [84.62067728093358]
弱教師付きオブジェクトローカライゼーションとセマンティックセグメンテーションは、画像レベルのラベルのみを使用してオブジェクトをローカライズすることを目的としている。
画素レベルのローカライゼーションを実現するために,フォアグラウンド予測マップを生成することで,新たなパラダイムが誕生した。
本稿では,物体の局在化学習過程に関する2つの驚くべき実験結果を示す。
論文 参考訳(メタデータ) (2023-09-22T15:44:10Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
FS-FGR (Few-shot Fine-fine Recognition) は、限られたサンプルの助けを借りて、新しいきめ細かなカテゴリを認識することを目的としている。
本研究では,背景アクティベーション抑制 (BAS) モジュール,フォアグラウンドオブジェクトアライメント (FOA) モジュール,および局所的局所的(L2L) 類似度測定器からなる2段階の背景アライメントとフォアグラウンドアライメントフレームワークを提案する。
複数のベンチマークで行った実験により,提案手法は既存の最先端技術よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2022-10-04T07:54:40Z) - Self-Guided Instance-Aware Network for Depth Completion and Enhancement [6.319531161477912]
既存の手法では,画素ワイド画像の内容とそれに対応する近傍の深度値に基づいて,欠落した深度測定を直接補間する。
本稿では、自己誘導機構を利用して、深度復元に必要なインスタンスレベルの特徴を抽出する自己誘導型インスタンス認識ネットワーク(SG-IANet)を提案する。
論文 参考訳(メタデータ) (2021-05-25T19:41:38Z) - Sign-Agnostic CONet: Learning Implicit Surface Reconstructions by
Sign-Agnostic Optimization of Convolutional Occupancy Networks [39.65056638604885]
畳み込み型ネットワークの符号非依存最適化により暗黙的表面再構成を学習する。
この目標をシンプルで効果的な設計で効果的に達成できることを示す。
論文 参考訳(メタデータ) (2021-05-08T03:35:32Z) - Non-Salient Region Object Mining for Weakly Supervised Semantic
Segmentation [64.2719590819468]
弱教師付きセマンティックセグメンテーションのための非塩分領域オブジェクトマイニング手法を提案する。
擬似ラベルの偽陰性率を低減するために、潜在的なオブジェクトマイニングモジュールを提案する。
非サリエント領域マスキングモジュールは、非サリエント領域内のオブジェクトをさらに発見するのに役立ちます。
論文 参考訳(メタデータ) (2021-03-26T16:44:03Z) - Salient Object Detection Combining a Self-attention Module and a Feature
Pyramid Network [10.81245352773775]
本稿では,新しいピラミッド自己保持モジュール (PSAM) と独立機能補完戦略の採用を提案する。
PSAMでは、よりリッチな高レベルの特徴をキャプチャし、より大きな受容場をモデルにもたらすために、多スケールピラミッド機能の後、自己注意層が装備される。
論文 参考訳(メタデータ) (2020-04-30T03:08:34Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
本稿では,セグメント化された平面マスクを画像に検出されたエッジと整列するための後処理アルゴリズムを提案する。
これにより、立方体形状の物体に制限を加えながら、最先端のアプローチの精度を高めることができます。
論文 参考訳(メタデータ) (2020-03-28T18:51:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。