Small Language Models Like Small Vocabularies: Probing the Linguistic Abilities of Grapheme- and Phoneme-Based Baby Llamas
- URL: http://arxiv.org/abs/2410.01487v1
- Date: Wed, 2 Oct 2024 12:36:08 GMT
- Title: Small Language Models Like Small Vocabularies: Probing the Linguistic Abilities of Grapheme- and Phoneme-Based Baby Llamas
- Authors: Bastian Bunzeck, Daniel Duran, Leonie Schade, Sina Zarrieß,
- Abstract summary: We show that small models based on the Llama architecture can achieve strong linguistic performance on standard syntactic and novel lexical/phonetic benchmarks.
Our findings suggest a promising direction for creating more linguistically plausible language models that are better suited for computational studies of language acquisition and processing.
- Score: 7.585433383340306
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current language models use subword-based tokenization algorithms like Byte Pair Encoding, which put their validity as models of linguistic representations into question. In this paper, we explore the potential of tokenization-free, phoneme- and grapheme-based language models. We demonstrate that small models based on the Llama architecture can achieve strong linguistic performance on standard syntactic and novel lexical/phonetic benchmarks when trained with character-level vocabularies. We further show that phoneme-based models without any graphemic biases almost match grapheme-based models in standard tasks and novel evaluations. Our findings suggest a promising direction for creating more linguistically plausible language models that are better suited for computational studies of language acquisition and processing.
Related papers
- Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - Morphological Inflection with Phonological Features [7.245355976804435]
This work explores effects on performance obtained through various ways in which morphological models get access to subcharacter phonological features.
We elicit phonemic data from standard graphemic data using language-specific grammars for languages with shallow grapheme-to-phoneme mapping.
arXiv Detail & Related papers (2023-06-21T21:34:39Z) - Wave to Syntax: Probing spoken language models for syntax [16.643072915927313]
We focus on the encoding of syntax in several self-supervised and visually grounded models of spoken language.
We show that syntax is captured most prominently in the middle layers of the networks, and more explicitly within models with more parameters.
arXiv Detail & Related papers (2023-05-30T11:43:18Z) - Tokenization Impacts Multilingual Language Modeling: Assessing
Vocabulary Allocation and Overlap Across Languages [3.716965622352967]
We propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers.
Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks.
arXiv Detail & Related papers (2023-05-26T18:06:49Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
We analyze zero-shot learning by paraphrasing training examples of canonical utterances and programs from a grammar.
We propose bridging these gaps using improved grammars, stronger paraphrasers, and efficient learning methods.
Our model achieves strong performance on two semantic parsing benchmarks (Scholar, Geo) with zero labeled data.
arXiv Detail & Related papers (2021-10-15T21:41:16Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z) - Constrained Language Models Yield Few-Shot Semantic Parsers [73.50960967598654]
We explore the use of large pretrained language models as few-shot semantics.
The goal in semantic parsing is to generate a structured meaning representation given a natural language input.
We use language models to paraphrase inputs into a controlled sublanguage resembling English that can be automatically mapped to a target meaning representation.
arXiv Detail & Related papers (2021-04-18T08:13:06Z) - Read Like Humans: Autonomous, Bidirectional and Iterative Language
Modeling for Scene Text Recognition [80.446770909975]
Linguistic knowledge is of great benefit to scene text recognition.
How to effectively model linguistic rules in end-to-end deep networks remains a research challenge.
We propose an autonomous, bidirectional and iterative ABINet for scene text recognition.
arXiv Detail & Related papers (2021-03-11T06:47:45Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - Are Some Words Worth More than Others? [3.5598388686985354]
We propose two new intrinsic evaluation measures within the framework of a simple word prediction task.
We evaluate several commonly-used large English language models using our proposed metrics.
arXiv Detail & Related papers (2020-10-12T23:12:11Z) - Learning Spoken Language Representations with Neural Lattice Language
Modeling [39.50831917042577]
We propose a framework that trains neural lattice language models to provide contextualized representations for spoken language understanding tasks.
The proposed two-stage pre-training approach reduces the demands of speech data and has better efficiency.
arXiv Detail & Related papers (2020-07-06T10:38:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.