論文の概要: Coordinate-Based Neural Representation Enabling Zero-Shot Learning for 3D Multiparametric Quantitative MRI
- arxiv url: http://arxiv.org/abs/2410.01577v1
- Date: Wed, 2 Oct 2024 14:13:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 16:54:49.207314
- Title: Coordinate-Based Neural Representation Enabling Zero-Shot Learning for 3D Multiparametric Quantitative MRI
- Title(参考訳): 3次元マルチパラメトリック定量的MRIのためのゼロショット学習に基づくコーディネートベースニューラル表現
- Authors: Guoyan Lao, Ruimin Feng, Haikun Qi, Zhenfeng Lv, Qiangqiang Liu, Chunlei Liu, Yuyao Zhang, Hongjiang Wei,
- Abstract要約: 我々は,同時マルチパラメトリックqMRIのためのデータ取得と教師なし再構成を含む,革新的なイメージング手法であるSUMMITを提案する。
qMRI再構成のための教師なしアプローチは、様々な医用画像モダリティに適用可能な、新しいゼロショット学習パラダイムも導入する。
- 参考スコア(独自算出の注目度): 4.707353256136099
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantitative magnetic resonance imaging (qMRI) offers tissue-specific physical parameters with significant potential for neuroscience research and clinical practice. However, lengthy scan times for 3D multiparametric qMRI acquisition limit its clinical utility. Here, we propose SUMMIT, an innovative imaging methodology that includes data acquisition and an unsupervised reconstruction for simultaneous multiparametric qMRI. SUMMIT first encodes multiple important quantitative properties into highly undersampled k-space. It further leverages implicit neural representation incorporated with a dedicated physics model to reconstruct the desired multiparametric maps without needing external training datasets. SUMMIT delivers co-registered T1, T2, T2*, and quantitative susceptibility mapping. Extensive simulations and phantom imaging demonstrate SUMMIT's high accuracy. Additionally, the proposed unsupervised approach for qMRI reconstruction also introduces a novel zero-shot learning paradigm for multiparametric imaging applicable to various medical imaging modalities.
- Abstract(参考訳): 定量的磁気共鳴イメージング(qMRI)は、神経科学研究や臨床実践に重要な可能性を持つ組織特異的物理パラメータを提供する。
しかし、3次元マルチパラメトリック qMRI 取得に要するスキャン時間は臨床的有用性に制限される。
本稿では,同時マルチパラメトリックqMRIのためのデータ取得と教師なし再構成を含む,革新的なイメージング手法であるSUMMITを提案する。
SUMMIT はまず複数の重要な量的特性を高度にアンサンプされた k-空間に符号化する。
さらに、専用の物理モデルに組み込まれた暗黙の神経表現を活用して、外部トレーニングデータセットを必要とせずに、所望のマルチパラメトリックマップを再構築する。
SUMMITは、共同登録されたT1、T2、T2*、および定量的感受性マッピングを提供する。
広範囲なシミュレーションとファントムイメージングは、SUMMITの精度を実証している。
さらに、qMRI再構成のための教師なしアプローチでは、様々な医療画像に適応するマルチパラメトリック画像のための新しいゼロショット学習パラダイムも導入されている。
関連論文リスト
- Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction [5.910509015352437]
高速MRIは、アンダーサンプリングされたk空間から高品質な画像を復元することを目的としている。
既存の方法では、アンサンプされたデータをアーティファクトのないMRI画像にマッピングするために、ディープラーニングモデルを訓練する。
画像領域誘導を用いた暗黙的ニューラル表現の新しい視点から、連続的なk空間回復ネットワークを提案する。
論文 参考訳(メタデータ) (2024-11-18T04:54:04Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
マルチモーダル脳磁気共鳴(MR)イメージングは神経科学や神経学において不可欠である。
現在のMR画像合成アプローチは、通常、特定のタスクのための独立したデータセットで訓練される。
テキスト誘導ユニバーサルMR画像合成モデルであるTUMSynについて述べる。
論文 参考訳(メタデータ) (2024-09-25T11:14:47Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - NeRF Solves Undersampled MRI Reconstruction [1.3597551064547502]
本稿では,Neural Radiance Field(NeRF)の概念を利用したMRI技術について述べる。
ラジアルアンダーサンプリングにより、対応する撮像問題をスパースビューレンダリングデータから画像モデリングタスクに再構成することができる。
空間座標から画像強度を出力する多層パーセプトロンは、所定の測定データと所望の画像との間のMR物理駆動レンダリング関係を学習する。
論文 参考訳(メタデータ) (2024-02-20T18:37:42Z) - IMJENSE: Scan-specific Implicit Representation for Joint Coil
Sensitivity and Image Estimation in Parallel MRI [11.159664312706704]
IMJENSEは、並列MRI再構成を改善するためのスキャン特異的暗黙の神経表現に基づく方法である。
IMJENSEは、MRI画像とコイル感度の強力な連続表現と共同推定により、従来の画像やk空間領域再構成アルゴリズムよりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-11-21T07:24:11Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Synthesis-based Imaging-Differentiation Representation Learning for
Multi-Sequence 3D/4D MRI [16.725225424047256]
画像差分表現学習のためのシーケンス・ツー・シーケンス生成フレームワーク(Seq2Seq)を提案する。
本研究では、1つのモデル内で任意の3D/4Dシーケンスを生成し、任意のターゲットシーケンスを生成するだけでなく、各シーケンスの重要性をランク付けする。
我々は,2万名の模擬被験者のおもちゃデータセット,1,251名の脳MRIデータセット,2,101名の乳房MRIデータセットを含む3つのデータセットを用いて広範な実験を行った。
論文 参考訳(メタデータ) (2023-02-01T15:37:35Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Unsupervised learning of MRI tissue properties using MRI physics models [10.979093424231532]
すべての臨床スキャナーで利用可能なプロトコルを使用して、単一のスキャンセッションから組織特性を推定することは、スキャン時間とコストを削減することを約束する。
我々は,MRI物理を用いた教師なし深層学習戦略を提案し,単一のマルチエコーMRIスキャンセッションから3つの組織特性を推定する。
組織特性推定とMRI合成の精度向上と一般化性を示した。
論文 参考訳(メタデータ) (2021-07-06T16:07:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。