論文の概要: Imaging foundation model for universal enhancement of non-ideal measurement CT
- arxiv url: http://arxiv.org/abs/2410.01591v1
- Date: Wed, 2 Oct 2024 14:25:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 16:44:34.895514
- Title: Imaging foundation model for universal enhancement of non-ideal measurement CT
- Title(参考訳): 非理想的CTの普遍的拡張のためのイメージング基礎モデル
- Authors: Yuxin Liu, Rongjun Ge, Yuting He, Zhan Wu, Chenyu You, Shuo Li, Yang Chen,
- Abstract要約: NICT(Non-ideal measured compute tomography)は、CT画像の新しい利点として最適な画像標準を犠牲にしている。
画像基準の引き下げにより、画像の質も低下し、臨床受容性が制限された。
画像品質の劣化を最小限のデータコストで橋渡しするマルチスケール統合トランスフォーマーAMP (TAMP) を提案する。
- 参考スコア(独自算出の注目度): 23.678515579203694
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Non-ideal measurement computed tomography (NICT), which sacrifices optimal imaging standards for new advantages in CT imaging, is expanding the clinical application scope of CT images. However, with the reduction of imaging standards, the image quality has also been reduced, extremely limiting the clinical acceptability. Although numerous studies have demonstrated the feasibility of deep learning for the NICT enhancement in specific scenarios, their high data cost and limited generalizability have become large obstacles. The recent research on the foundation model has brought new opportunities for building a universal NICT enhancement model - bridging the image quality degradation with minimal data cost. However, owing to the challenges in the collection of large pre-training datasets and the compatibility of data variation, no success has been reported. In this paper, we propose a multi-scale integrated Transformer AMPlifier (TAMP), the first imaging foundation model for universal NICT enhancement. It has been pre-trained on a large-scale physical-driven simulation dataset with 3.6 million NICT-ICT image pairs, and is able to directly generalize to the NICT enhancement tasks with various non-ideal settings and body regions. Via the adaptation with few data, it can further achieve professional performance in real-world specific scenarios. Our extensive experiments have demonstrated that the proposed TAMP has significant potential for promoting the exploration and application of NICT and serving a wider range of medical scenarios.
- Abstract(参考訳): CT画像の新たな優位性のために最適な画像標準を犠牲にした非理想的計測CT(NICT)は、CT画像の臨床応用範囲を拡大している。
しかし, 画像基準の引き下げにより画像品質も低下し, 臨床受容性は極めて低下した。
特定のシナリオにおけるNICT強化のためのディープラーニングの実現可能性を示す研究は数多くあるが、その高コストと限定的な一般化性は大きな障害となっている。
ファンデーションモデルに関する最近の研究は、画像品質の劣化を最小限のデータコストで埋める、ユニバーサルなNICT拡張モデルを構築する新たな機会をもたらした。
しかし、大規模な事前トレーニングデータセットの収集とデータの互換性の課題のため、成功は報告されていない。
本稿では,NICT拡張のための最初のイメージング基盤モデルであるマルチスケール統合トランスフォーマーAMP(TAMP)を提案する。
360万のNICT-ICTイメージペアを持つ大規模物理駆動シミュレーションデータセットで事前訓練され、様々な非理想的設定や身体領域を持つNICT拡張タスクに直接一般化することができる。
少ないデータで適応することで、現実の特定のシナリオでさらにプロのパフォーマンスを達成することができる。
我々の広範な実験により,提案したTAMPは,NICTの探索と適用を促進し,幅広い医療シナリオに役立てる大きな可能性を実証した。
関連論文リスト
- SegBook: A Simple Baseline and Cookbook for Volumetric Medical Image Segmentation [20.026663367994356]
大量のフルボディCT画像は、強力なモデルを事前訓練する機会を提供する。
これらの事前訓練されたモデルが、下流の様々な医療セグメンテーションタスクに移行できる状況は、まだ不明である。
我々は,全体CT事前訓練モデルの転写能力を評価するために,モダリティ,ターゲット,サンプルサイズが異なる87の公開データセットを収集した。
論文 参考訳(メタデータ) (2024-11-21T19:00:01Z) - Self-supervised Vision Transformer are Scalable Generative Models for Domain Generalization [0.13108652488669734]
病理組織像における領域一般化のための新しい生成法を提案する。
本手法では,画像パッチの特徴を動的に抽出するために,生成型自己教師型視覚変換器を用いる。
2つの異なる病理組織学的データセットを用いて行った実験は,提案手法の有効性を示した。
論文 参考訳(メタデータ) (2024-07-03T08:20:27Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
ニュージーランドの臨床試験において,PCCT画像の半減量と2倍の速度で再現する深層学習に基づくアプローチを提案する。
本稿では,GPUメモリの制限を緩和するパッチベースのボリュームリファインメントネットワーク,合成データを用いたトレーニングネットワーク,およびモデルベースの反復リファインメントを用いて,合成データと実世界のギャップを埋める。
論文 参考訳(メタデータ) (2024-03-19T00:07:48Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - USIM-DAL: Uncertainty-aware Statistical Image Modeling-based Dense
Active Learning for Super-resolution [47.38982697349244]
デンス回帰(Dense regression)は、画像の超解像、エンハンスメント、深さ推定などのタスクのためのコンピュータビジョンで広く使われているアプローチである。
この問題に対処するために,能動学習を高密度回帰モデルに組み込むことを提案する。
アクティブな学習により、モデルはラベル付けのための最も有益なサンプルを選択し、全体的なアノテーションコストを削減し、パフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2023-05-27T16:33:43Z) - This Intestine Does Not Exist: Multiscale Residual Variational
Autoencoder for Realistic Wireless Capsule Endoscopy Image Generation [7.430724826764835]
新規な変分オートエンコーダアーキテクチャ,すなわち "This Intestine Don Not Exist" (TIDE) を提案する。
提案アーキテクチャは,マルチスケールな特徴抽出畳み込みブロックと残差接続を備え,高品質で多様なデータセットの生成を可能にする。
利用可能なデータセットの増大を指向した現在のアプローチとは対照的に,本研究では,TIDEを用いて実際のWCEデータセットを完全に置換できることを実証する。
論文 参考訳(メタデータ) (2023-02-04T11:49:38Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
胸部CTスキャンの小さなデータセットを用いて,大規模な3次元合成CTスキャンボリュームを生成するCT-SGANモデルを提案する。
その結果,CT-SGANは大量の合成データに基づいて結節を事前訓練することにより,肺検出精度を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-10-14T22:20:40Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。