論文の概要: Imaging foundation model for universal enhancement of non-ideal measurement CT
- arxiv url: http://arxiv.org/abs/2410.01591v2
- Date: Tue, 25 Feb 2025 18:28:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:19:18.820655
- Title: Imaging foundation model for universal enhancement of non-ideal measurement CT
- Title(参考訳): 非理想的CTの普遍的拡張のためのイメージング基礎モデル
- Authors: Yuxin Liu, Rongjun Ge, Yuting He, Zhan Wu, Shangwen Yang, Yuan Gao, Chenyu You, Ge Wang, Yang Chen, Shuo Li,
- Abstract要約: NICT(Non-ideal Measurement Computed Tomography)は、CTの応用を拡大するために、準最適イメージングプロトコルを用いる。
深層学習法はNICT画像の強化に使われてきたが、大規模なトレーニングデータセットに依存しているため、実用化は困難である。
NICT拡張のための最初のイメージング基盤モデルであるマルチスケール統合トランスフォーマーAMPlifier (TAMP) を提案する。
- 参考スコア(独自算出の注目度): 27.25680090992457
- License:
- Abstract: Non-ideal measurement computed tomography (NICT) employs suboptimal imaging protocols to expand CT applications. However, the resulting trade-offs degrade image quality, limiting clinical acceptability. Although deep learning methods have been used to enhance NICT images, their reliance on large training datasets and limited generalizability across diverse settings hinder practical use. We propose the multi-scale integrated Transformer AMPlifier (TAMP), the first imaging foundation model for universal NICT enhancement. Pre-trained on 10.8 million physics-driven simulated NICT images, TAMP generalizes effectively across various NICT settings, defect degrees, and body regions. Moreover, a parameter-efficient fine-tuning strategy enables TAMP to adapt to specific clinical scenarios using only few slices. Extensive experiments, including radiologists and real-world validations, demonstrate that TAMP consistently improves image quality and clinical acceptability, underscoring its significant potential to advance CT imaging and broaden NICT applications in clinical practice.
- Abstract(参考訳): NICT(Non-ideal Measurement Computed Tomography)は、CTの応用を拡大するために、準最適イメージングプロトコルを用いる。
しかし、結果として得られるトレードオフは画質を低下させ、臨床受容性を制限する。
深層学習はNICT画像の強化に利用されてきたが、大規模なトレーニングデータセットへの依存と多様な設定の一般化性に制限があるため、実用化は困難である。
NICT拡張のための最初のイメージング基盤モデルであるマルチスケール統合トランスフォーマーAMPlifier (TAMP) を提案する。
1080万の物理駆動型NICT画像に基づいて事前訓練されたTAMPは、様々なNICT設定、欠陥度、身体領域を効果的に一般化する。
さらに、パラメータ効率の良い微調整戦略により、TAMPはわずかなスライスだけで特定の臨床シナリオに適応できる。
放射線医や実世界のバリデーションを含む広範囲な実験は、TAMPが画像の品質と臨床受容性を一貫して改善し、CT画像の進歩と臨床実践におけるNICT応用の拡大の可能性を強調している。
関連論文リスト
- OCT Data is All You Need: How Vision Transformers with and without Pre-training Benefit Imaging [0.0]
我々は,イメージネットを用いた事前学習がOCT画像分類における視覚変換器(ViT)の性能に与える影響について検討した。
結果として、事前トレーニングは収束を加速し、より小さなデータセットでより良いパフォーマンスを提供する可能性があるが、十分なOCTデータが利用可能であれば、スクラッチからのトレーニングは同等またはそれ以上の精度を達成する可能性があることが示唆された。
論文 参考訳(メタデータ) (2025-02-17T23:31:57Z) - Efficient MedSAMs: Segment Anything in Medical Images on Laptop [69.28565867103542]
我々は,迅速な医用画像のセグメンテーションに特化した初の国際コンペを組織した。
トップチームは軽量なセグメンテーション基盤モデルを開発し、効率的な推論パイプラインを実装した。
最高のパフォーマンスのアルゴリズムは、臨床導入を促進するために、ユーザフレンドリーなインターフェースを備えたオープンソースソフトウェアに組み込まれている。
論文 参考訳(メタデータ) (2024-12-20T17:33:35Z) - FoundIR: Unleashing Million-scale Training Data to Advance Foundation Models for Image Restoration [66.61201445650323]
既存の手法は現実のシナリオにおける一般化ボトルネックに悩まされる。
既存のトレーニングデータに対して,2つの大きなメリットがある,100万規模のデータセットをコントリビュートしています。
実世界のシナリオにおいて,より広範囲の復元作業に対処するために,ロバストなモデルFoundIRを提案する。
論文 参考訳(メタデータ) (2024-12-02T12:08:40Z) - SegBook: A Simple Baseline and Cookbook for Volumetric Medical Image Segmentation [20.026663367994356]
大量のフルボディCT画像は、強力なモデルを事前訓練する機会を提供する。
これらの事前訓練されたモデルが、下流の様々な医療セグメンテーションタスクに移行できる状況は、まだ不明である。
我々は,全体CT事前訓練モデルの転写能力を評価するために,モダリティ,ターゲット,サンプルサイズが異なる87の公開データセットを収集した。
論文 参考訳(メタデータ) (2024-11-21T19:00:01Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
ニュージーランドの臨床試験において,PCCT画像の半減量と2倍の速度で再現する深層学習に基づくアプローチを提案する。
本稿では,GPUメモリの制限を緩和するパッチベースのボリュームリファインメントネットワーク,合成データを用いたトレーニングネットワーク,およびモデルベースの反復リファインメントを用いて,合成データと実世界のギャップを埋める。
論文 参考訳(メタデータ) (2024-03-19T00:07:48Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - This Intestine Does Not Exist: Multiscale Residual Variational
Autoencoder for Realistic Wireless Capsule Endoscopy Image Generation [7.430724826764835]
新規な変分オートエンコーダアーキテクチャ,すなわち "This Intestine Don Not Exist" (TIDE) を提案する。
提案アーキテクチャは,マルチスケールな特徴抽出畳み込みブロックと残差接続を備え,高品質で多様なデータセットの生成を可能にする。
利用可能なデータセットの増大を指向した現在のアプローチとは対照的に,本研究では,TIDEを用いて実際のWCEデータセットを完全に置換できることを実証する。
論文 参考訳(メタデータ) (2023-02-04T11:49:38Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
胸部CTスキャンの小さなデータセットを用いて,大規模な3次元合成CTスキャンボリュームを生成するCT-SGANモデルを提案する。
その結果,CT-SGANは大量の合成データに基づいて結節を事前訓練することにより,肺検出精度を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-10-14T22:20:40Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。