論文の概要: Elaborative Subtopic Query Reformulation for Broad and Indirect Queries in Travel Destination Recommendation
- arxiv url: http://arxiv.org/abs/2410.01598v1
- Date: Wed, 2 Oct 2024 14:36:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 16:44:34.878123
- Title: Elaborative Subtopic Query Reformulation for Broad and Indirect Queries in Travel Destination Recommendation
- Title(参考訳): 旅行先推薦における広帯域および間接クエリの協調的サブトピッククエリ再構成
- Authors: Qianfeng Wen, Yifan Liu, Joshua Zhang, George Saad, Anton Korikov, Yury Sambale, Scott Sanner,
- Abstract要約: 大規模言語モデルに基づくQR手法であるEQR(Elaborative Subtopic Query Reformulation)を導入する。
EQRは、潜在的なクエリサブトピックと情報豊富なエラボレーションを生成することで、幅と深さを兼ね備えている。
また、クエリ駆動の旅行先RSのための新しいデータセットであるTravelDestをリリースする。
- 参考スコア(独自算出の注目度): 21.070517682154662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Query-driven Travel Recommender Systems (RSs), it is crucial to understand the user intent behind challenging natural language(NL) destination queries such as the broadly worded "youth-friendly activities" or the indirect description "a high school graduation trip". Such queries are challenging due to the wide scope and subtlety of potential user intents that confound the ability of retrieval methods to infer relevant destinations from available textual descriptions such as WikiVoyage. While query reformulation (QR) has proven effective in enhancing retrieval by addressing user intent, existing QR methods tend to focus only on expanding the range of potentially matching query subtopics (breadth) or elaborating on the potential meaning of a query (depth), but not both. In this paper, we introduce Elaborative Subtopic Query Reformulation (EQR), a large language model-based QR method that combines both breadth and depth by generating potential query subtopics with information-rich elaborations. We also release TravelDest, a novel dataset for query-driven travel destination RSs. Experiments on TravelDest show that EQR achieves significant improvements in recall and precision over existing state-of-the-art QR methods.
- Abstract(参考訳): クエリ駆動のトラベルレコメンダシステム(RS)では、広義の「若者フレンドリーな活動」や間接的な「高校卒業旅行」といった自然言語(NL)宛先クエリの背景にあるユーザの意図を理解することが不可欠である。
このようなクエリは、WikiVoyageのような利用可能なテキスト記述から関連する宛先を推測する検索方法の能力を阻害する潜在的なユーザ意図の広い範囲と微妙さのため、難しい。
クエリ再構成(QR)は、ユーザの意図に対処することで、検索の強化に有効であることが証明されているが、既存のQRメソッドは、潜在的にマッチするクエリのサブトピック(ブレッドス)の範囲を広げるか、あるいはクエリの潜在的な意味(深度)を解明するだけにのみ焦点を絞っているが、両方ではない。
本稿では,多言語モデルに基づくQR手法であるEQR(Elaborative Subtopic Query Reformulation)を提案する。
また、クエリ駆動の旅行先RSのための新しいデータセットであるTravelDestをリリースする。
TravelDestの実験によると、EQRは既存の最先端QRメソッドよりもリコールと精度が大幅に向上している。
関連論文リスト
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Conversational Query Reformulation with the Guidance of Retrieved Documents [4.438698005789677]
本稿では,最初に検索した文書からキーのinfFormationを活用することでクエリを洗練するフレームワークである GuideCQRを紹介する。
GuideCQRは,人間によるクエリであっても,さまざまなタイプのクエリを用いた会話検索において,さらなるパフォーマンス向上が期待できることを示す。
論文 参考訳(メタデータ) (2024-07-17T07:39:16Z) - Redefining Information Retrieval of Structured Database via Large Language Models [10.117751707641416]
本稿では,ChatLRと呼ばれる新しい検索拡張フレームワークを提案する。
主に、Large Language Models (LLM) の強力な意味理解能力を用いて、正確かつ簡潔な情報検索を実現する。
実験の結果、ChatLRがユーザクエリに対処する効果を示し、全体の情報検索精度は98.8%を超えた。
論文 参考訳(メタデータ) (2024-05-09T02:37:53Z) - CLARINET: Augmenting Language Models to Ask Clarification Questions for Retrieval [52.134133938779776]
CLARINETは,回答が正しい候補の確実性を最大化する質問を選択することで,情報的明確化を問うシステムである。
提案手法は,大規模言語モデル(LLM)を検索分布の条件付きで拡張し,各ターンで真の候補のランクを最大化する問題を生成する。
論文 参考訳(メタデータ) (2024-04-28T18:21:31Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
大きな言語モデル(LLM)は優れた能力を示すが、不正確なあるいは幻覚反応を引き起こす傾向がある。
この制限は、膨大な事前トレーニングデータセットに依存することに起因するため、目に見えないシナリオでのエラーの影響を受けやすい。
Retrieval-Augmented Generation (RAG) は、外部の関連文書を応答生成プロセスに組み込むことによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-03-31T08:58:54Z) - Selecting Query-bag as Pseudo Relevance Feedback for Information-seeking Conversations [76.70349332096693]
情報検索対話システムは電子商取引システムで広く利用されている。
クエリバッグに基づくPseudo Relevance Feedback framework(QB-PRF)を提案する。
関連クエリを備えたクエリバッグを構築し、擬似シグナルとして機能し、情報検索の会話をガイドする。
論文 参考訳(メタデータ) (2024-03-22T08:10:32Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
情報検索は、オープンドメイン質問応答(QA)など、多くのダウンストリームタスクにとって重要な要素である。
本稿では、エンティティ/イベントリンクモデルとクエリ分解モデルを用いて、クエリの異なる情報単位により正確にフォーカスする情報検索パイプラインを提案する。
より解釈可能で信頼性が高いが,提案したパイプラインは,5つのIRおよびQAベンチマークにおける通過カバレッジと記述精度を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-09T07:47:17Z) - CONQRR: Conversational Query Rewriting for Retrieval with Reinforcement
Learning [16.470428531658232]
本研究では,会話型質問を独立した質問に書き換えるクエリ書き換えモデルCONQRRを提案する。
CONQRR は最近のオープンドメイン CQA データセットで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-12-16T01:40:30Z) - Effective FAQ Retrieval and Question Matching With Unsupervised
Knowledge Injection [10.82418428209551]
質問に対して適切な回答を得るための文脈言語モデルを提案する。
また、ドメイン固有の単語間のトポロジ関連関係を教師なしの方法で活用することについても検討する。
提案手法のバリエーションを,公開可能な中国語FAQデータセット上で評価し,さらに大規模質問マッチングタスクに適用し,コンテキスト化する。
論文 参考訳(メタデータ) (2020-10-27T05:03:34Z) - Open-Retrieval Conversational Question Answering [62.11228261293487]
オープン検索型対話型質問応答 (ORConvQA) の設定を導入する。
ORConvQAのエンド・ツー・エンドシステムを構築し,レトリバー,リランカ,およびすべてトランスフォーマーをベースとしたリーダを特徴とする。
論文 参考訳(メタデータ) (2020-05-22T19:39:50Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。