論文の概要: Open-Retrieval Conversational Question Answering
- arxiv url: http://arxiv.org/abs/2005.11364v1
- Date: Fri, 22 May 2020 19:39:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 09:35:03.515806
- Title: Open-Retrieval Conversational Question Answering
- Title(参考訳): オープン検索型対話型質問応答
- Authors: Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W. Bruce Croft and Mohit
Iyyer
- Abstract要約: オープン検索型対話型質問応答 (ORConvQA) の設定を導入する。
ORConvQAのエンド・ツー・エンドシステムを構築し,レトリバー,リランカ,およびすべてトランスフォーマーをベースとしたリーダを特徴とする。
- 参考スコア(独自算出の注目度): 62.11228261293487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational search is one of the ultimate goals of information retrieval.
Recent research approaches conversational search by simplified settings of
response ranking and conversational question answering, where an answer is
either selected from a given candidate set or extracted from a given passage.
These simplifications neglect the fundamental role of retrieval in
conversational search. To address this limitation, we introduce an
open-retrieval conversational question answering (ORConvQA) setting, where we
learn to retrieve evidence from a large collection before extracting answers,
as a further step towards building functional conversational search systems. We
create a dataset, OR-QuAC, to facilitate research on ORConvQA. We build an
end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader
that are all based on Transformers. Our extensive experiments on OR-QuAC
demonstrate that a learnable retriever is crucial for ORConvQA. We further show
that our system can make a substantial improvement when we enable history
modeling in all system components. Moreover, we show that the reranker
component contributes to the model performance by providing a regularization
effect. Finally, further in-depth analyses are performed to provide new
insights into ORConvQA.
- Abstract(参考訳): 会話探索は情報検索の究極の目標の1つである。
最近の研究は、応答ランキングと会話型質問応答の設定を単純化し、ある候補から回答が選択されたり、与えられた通路から抽出されたりすることで、会話型検索にアプローチしている。
これらの単純化は、会話探索における検索の基本的な役割を無視している。
この制限に対処するために,我々はオープン・リトリーヴァル・会話型質問応答(orconvqa)という設定を導入し,回答を抽出する前に大量のコレクションから証拠を検索することを学び,機能的な対話型検索システムを構築するためのさらなるステップを提案する。
ORConvQAの研究を容易にするデータセットOR-QuACを作成する。
ORConvQAのエンド・ツー・エンドシステムを構築し,レトリバー,リランカ,およびすべてトランスフォーマーをベースとしたリーダを特徴とする。
OR-QuACに関する広範な実験により、学習可能なレトリバーがORConvQAにとって重要であることが示された。
さらに,すべてのシステムコンポーネントで履歴モデリングを有効にすることで,システムが大幅に改善できることを示す。
さらに,レギュラー化効果を提供することで,リランカコンポーネントがモデル性能に寄与することを示す。
最後に、ORConvQAに関する新たな洞察を提供するため、詳細な分析を行う。
関連論文リスト
- Learning When to Retrieve, What to Rewrite, and How to Respond in Conversational QA [16.1357049130957]
シングルターンSELF-RAGフレームワークを構築し,会話設定のためのSELF-multi-RAGを提案する。
SELF-multi-RAGは、関連するパスの検索に関して、シングルターン変種よりも改善された機能を示す。
論文 参考訳(メタデータ) (2024-09-23T20:05:12Z) - Conversational Query Reformulation with the Guidance of Retrieved Documents [4.438698005789677]
本稿では,最初に検索した文書からキーのinfFormationを活用することでクエリを洗練するフレームワークである GuideCQRを紹介する。
GuideCQRは,人間によるクエリであっても,さまざまなタイプのクエリを用いた会話検索において,さらなるパフォーマンス向上が期待できることを示す。
論文 参考訳(メタデータ) (2024-07-17T07:39:16Z) - Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check [25.63538452425097]
本稿では,対話型質問応答のための細粒度検索と自己チェックを組み込んだ対話レベルのRAG手法を提案する。
特に,本手法は,対話型質問精算器,きめ細かい検索器,自己チェックに基づく応答生成器の3つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-03-27T04:20:18Z) - History-Aware Conversational Dense Retrieval [31.203399110612388]
本稿では,コンテキスト依存型クエリ再構成と監視信号の自動マイニングという2つのアイデアを取り入れた,履歴認識型会話用Dense Retrieval(HAConvDR)システムを提案する。
2つの公開対話型検索データセットの実験は、HAConvDRの履歴モデリング機能の改善を実証している。
論文 参考訳(メタデータ) (2024-01-30T01:24:18Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQは、テキストと画像のクエリからコンテンツを統合することで、大規模なコーパスから知識を取得するシステムを必要とする。
本稿では,入力テキストや画像を直接処理し,関連する知識をエンドツーエンドで検索する検索モデルReViz'を提案する。
ゼロショット設定下での2つのデータセットの検索において,優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T08:04:12Z) - CONQRR: Conversational Query Rewriting for Retrieval with Reinforcement
Learning [16.470428531658232]
本研究では,会話型質問を独立した質問に書き換えるクエリ書き換えモデルCONQRRを提案する。
CONQRR は最近のオープンドメイン CQA データセットで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-12-16T01:40:30Z) - A Graph-guided Multi-round Retrieval Method for Conversational
Open-domain Question Answering [52.041815783025186]
本稿では,会話のターン間の回答間の関係をモデル化するグラフ誘導検索手法を提案する。
また,検索コンテキストが現在の質問理解に与える影響を検討するために,マルチラウンド関連フィードバック手法を導入することを提案する。
論文 参考訳(メタデータ) (2021-04-17T04:39:41Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
本稿では,双方向トランスフォーマに基づくニューラルクエリ解決モデルQuReTeCを提案する。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
論文 参考訳(メタデータ) (2020-05-24T11:37:22Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z) - Conversations with Search Engines: SERP-based Conversational Response
Generation [77.1381159789032]
我々は、検索エンジンと対話するためのパイプラインを開発するために、適切なデータセット、検索・アズ・ア・会話(SaaC)データセットを作成します。
また、このデータセットを用いて、検索エンジンと対話するための最先端パイプライン(Conversations with Search Engines (CaSE))も開発しています。
CaSEは、サポートされたトークン識別モジュールとプリア・アウェア・ポインタージェネレータを導入することで最先端を向上する。
論文 参考訳(メタデータ) (2020-04-29T13:07:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。