HarmoniCa: Harmonizing Training and Inference for Better Feature Cache in Diffusion Transformer Acceleration
- URL: http://arxiv.org/abs/2410.01723v2
- Date: Fri, 4 Oct 2024 10:14:17 GMT
- Title: HarmoniCa: Harmonizing Training and Inference for Better Feature Cache in Diffusion Transformer Acceleration
- Authors: Yushi Huang, Zining Wang, Ruihao Gong, Jing Liu, Xinjie Zhang, Jun Zhang,
- Abstract summary: We propose a novel method that Harmonizes training and inference with a novel learning-based Caching framework.
Compared to the traditional training paradigm, the newly proposed SDT maintains the continuity of the denoising process.
IEPO integrates an efficient proxy mechanism to approximate the final image error caused by reusing the cached feature.
- Score: 18.170285241800798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion Transformers (DiTs) have gained prominence for outstanding scalability and extraordinary performance in generative tasks. However, their considerable inference costs impede practical deployment. The feature cache mechanism, which involves storing and retrieving redundant computations across timesteps, holds promise for reducing per-step inference time in diffusion models. Most existing caching methods for DiT are manually designed. Although the learning-based approach attempts to optimize strategies adaptively, it suffers from discrepancies between training and inference, which hampers both the performance and acceleration ratio. Upon detailed analysis, we pinpoint that these discrepancies primarily stem from two aspects: (1) Prior Timestep Disregard, where training ignores the effect of cache usage at earlier timesteps, and (2) Objective Mismatch, where the training target (align predicted noise in each timestep) deviates from the goal of inference (generate the high-quality image). To alleviate these discrepancies, we propose HarmoniCa, a novel method that Harmonizes training and inference with a novel learning-based Caching framework built upon Step-Wise Denoising Training (SDT) and Image Error Proxy-Guided Objective (IEPO). Compared to the traditional training paradigm, the newly proposed SDT maintains the continuity of the denoising process, enabling the model to leverage information from prior timesteps during training, similar to the way it operates during inference. Furthermore, we design IEPO, which integrates an efficient proxy mechanism to approximate the final image error caused by reusing the cached feature. Therefore, IEPO helps balance final image quality and cache utilization, resolving the issue of training that only considers the impact of cache usage on the predicted output at each timestep.
Related papers
- AB-Cache: Training-Free Acceleration of Diffusion Models via Adams-Bashforth Cached Feature Reuse [19.13826316844611]
Diffusion models have demonstrated remarkable success in generative tasks, yet their iterative denoising process results in slow inference.
We provide a theoretical understanding by analyzing the denoising process through the second-order Adams-Bashforth method.
We propose a novel caching-based acceleration approach for diffusion models, instead of directly reusing cached results.
arXiv Detail & Related papers (2025-04-13T08:29:58Z) - Towards Better Alignment: Training Diffusion Models with Reinforcement Learning Against Sparse Rewards [52.90573877727541]
reinforcement learning (RL) has been considered for diffusion model fine-tuning.
RL's effectiveness is limited by the challenge of sparse reward.
$textB2text-DiffuRL$ is compatible with existing optimization algorithms.
arXiv Detail & Related papers (2025-03-14T09:45:19Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
We propose an algorithm that enables fast and high-quality generation under arbitrary constraints.
During inference, we can interchange between gradient updates computed on the noisy image and updates computed on the final, clean image.
Our approach produces results that rival or surpass the state-of-the-art training-free inference approaches.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - FreCaS: Efficient Higher-Resolution Image Generation via Frequency-aware Cascaded Sampling [13.275724439963188]
FreCaS decomposes the sampling process into cascaded stages with gradually increased resolutions.
FreCaS significantly outperforms state-of-the-art methods in image quality and generation speed.
arXiv Detail & Related papers (2024-10-24T03:56:44Z) - ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference [41.41316718220569]
ExpertFlow is designed to enhance inference efficiency by accommodating flexible routing and enabling efficient expert scheduling between CPU and GPU.
Our experiments demonstrate that ExpertFlow achieves up to 93.72% GPU memory savings and enhances inference speed by 2 to 10 times compared to baseline methods.
arXiv Detail & Related papers (2024-10-23T15:24:54Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
Diffusion models rely on the time-step for the multi-round denoising.
We introduce a novel quantization framework that includes three strategies.
This framework preserves most of the temporal information and ensures high-quality end-to-end generation.
arXiv Detail & Related papers (2024-07-28T17:46:15Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Implicit Image-to-Image Schrodinger Bridge for Image Restoration [13.138398298354113]
We introduce the Implicit Image-to-Image Schr"odinger Bridge (I$3$SB) to further accelerate the generative process of I$2$SB.
I$3$SB restructures the generative process into a non-Markovian framework by incorporating the initial corrupted image at each generative step.
Compared to I$2$SB, I$3$SB achieves the same perceptual quality with fewer generative steps, while maintaining or improving fidelity to the ground truth.
arXiv Detail & Related papers (2024-03-10T03:22:57Z) - Retraining-free Model Quantization via One-Shot Weight-Coupling Learning [41.299675080384]
Mixed-precision quantization (MPQ) is advocated to compress the model effectively by allocating heterogeneous bit-width for layers.
MPQ is typically organized into a searching-retraining two-stage process.
In this paper, we devise a one-shot training-searching paradigm for mixed-precision model compression.
arXiv Detail & Related papers (2024-01-03T05:26:57Z) - DeepCache: Accelerating Diffusion Models for Free [65.02607075556742]
DeepCache is a training-free paradigm that accelerates diffusion models from the perspective of model architecture.
DeepCache capitalizes on the inherent temporal redundancy observed in the sequential denoising steps of diffusion models.
Under the same throughput, DeepCache effectively achieves comparable or even marginally improved results with DDIM or PLMS.
arXiv Detail & Related papers (2023-12-01T17:01:06Z) - ACT-Diffusion: Efficient Adversarial Consistency Training for One-step Diffusion Models [59.90959789767886]
We show that optimizing consistency training loss minimizes the Wasserstein distance between target and generated distributions.
By incorporating a discriminator into the consistency training framework, our method achieves improved FID scores on CIFAR10 and ImageNet 64$times$64 and LSUN Cat 256$times$256 datasets.
arXiv Detail & Related papers (2023-11-23T16:49:06Z) - On the Effectiveness of LayerNorm Tuning for Continual Learning in
Vision Transformers [47.77328392236625]
State-of-the-art rehearsal-free continual learning methods exploit the peculiarities of Vision Transformers to learn task-specific prompts.
We introduce a two-stage training procedure, where we first optimize the task-specific parameters and then train the classifier with the same selection procedure of the inference time.
Our method achieves results that are either superior or on par with the state of the art while being computationally cheaper.
arXiv Detail & Related papers (2023-08-18T15:11:16Z) - Adaptive Cross Batch Normalization for Metric Learning [75.91093210956116]
Metric learning is a fundamental problem in computer vision.
We show that it is equally important to ensure that the accumulated embeddings are up to date.
In particular, it is necessary to circumvent the representational drift between the accumulated embeddings and the feature embeddings at the current training iteration.
arXiv Detail & Related papers (2023-03-30T03:22:52Z) - Efficient Diffusion Training via Min-SNR Weighting Strategy [78.5801305960993]
We treat the diffusion training as a multi-task learning problem and introduce a simple yet effective approach referred to as Min-SNR-$gamma$.
Our results demonstrate a significant improvement in converging speed, 3.4$times$ faster than previous weighting strategies.
It is also more effective, achieving a new record FID score of 2.06 on the ImageNet $256times256$ benchmark using smaller architectures than that employed in previous state-of-the-art.
arXiv Detail & Related papers (2023-03-16T17:59:56Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
We propose a novel caching paradigm, that we named approximate-key caching.
While approximate cache hits alleviate DL inference workload and increase the system throughput, they however introduce an approximation error.
We analytically model our caching system performance for classic LRU and ideal caches, we perform a trace-driven evaluation of the expected performance, and we compare the benefits of our proposed approach with the state-of-the-art similarity caching.
arXiv Detail & Related papers (2021-12-13T13:49:11Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - BERT Loses Patience: Fast and Robust Inference with Early Exit [91.26199404912019]
We propose Patience-based Early Exit as a plug-and-play technique to improve the efficiency and robustness of a pretrained language model.
Our approach improves inference efficiency as it allows the model to make a prediction with fewer layers.
arXiv Detail & Related papers (2020-06-07T13:38:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.