論文の概要: EgoAvatar: Egocentric View-Driven and Photorealistic Full-body Avatars
- arxiv url: http://arxiv.org/abs/2410.01835v1
- Date: Tue, 8 Oct 2024 23:01:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 14:45:01.778244
- Title: EgoAvatar: Egocentric View-Driven and Photorealistic Full-body Avatars
- Title(参考訳): EgoAvatar: Egocentric View-Driven and Photorealistic Full-body Avatar
- Authors: Jianchun Chen, Jian Wang, Yinda Zhang, Rohit Pandey, Thabo Beeler, Marc Habermann, Christian Theobalt,
- Abstract要約: 本研究では,光合成デジタルアバターを共同でモデル化し,同時に1つの自我中心映像から駆動する人物中心型テレプレゼンス手法を提案する。
提案手法は,エゴセントリック・フォトリアル・テレプレゼンスへの明確な一歩として,ベースラインと競合する手法に優れることを示す。
- 参考スコア(独自算出の注目度): 56.56236652774294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Immersive VR telepresence ideally means being able to interact and communicate with digital avatars that are indistinguishable from and precisely reflect the behaviour of their real counterparts. The core technical challenge is two fold: Creating a digital double that faithfully reflects the real human and tracking the real human solely from egocentric sensing devices that are lightweight and have a low energy consumption, e.g. a single RGB camera. Up to date, no unified solution to this problem exists as recent works solely focus on egocentric motion capture, only model the head, or build avatars from multi-view captures. In this work, we, for the first time in literature, propose a person-specific egocentric telepresence approach, which jointly models the photoreal digital avatar while also driving it from a single egocentric video. We first present a character model that is animatible, i.e. can be solely driven by skeletal motion, while being capable of modeling geometry and appearance. Then, we introduce a personalized egocentric motion capture component, which recovers full-body motion from an egocentric video. Finally, we apply the recovered pose to our character model and perform a test-time mesh refinement such that the geometry faithfully projects onto the egocentric view. To validate our design choices, we propose a new and challenging benchmark, which provides paired egocentric and dense multi-view videos of real humans performing various motions. Our experiments demonstrate a clear step towards egocentric and photoreal telepresence as our method outperforms baselines as well as competing methods. For more details, code, and data, we refer to our project page.
- Abstract(参考訳): 没入型VRテレプレゼンス(Immersive VR telepresence, 没入型VRテレプレゼンス)とは、デジタルアバターと対話でき、実際のアバターの振る舞いを正確に反映できることを意味する。
真の人間を忠実に反映したデジタルダブルを作ること、そして1台のRGBカメラのように、軽量で低エネルギー消費のエゴセントリックなセンサーデバイスからのみ、本物の人間を追跡すること。
これまでのところ、この問題に対する統一的な解決策は存在しない。最近の研究は、エゴセントリックなモーションキャプチャーのみに焦点を当て、頭部のみをモデル化し、マルチビューキャプチャーからアバターを構築する。
本研究は,本研究で初めて,人物中心型テレプレゼンスアプローチを提案する。これは,光合成デジタルアバターを共同でモデル化し,同時に,単一の自我中心ビデオから駆動するものである。
まず,骨格運動のみによってのみ駆動され,形状や外観をモデル化できるキャラクタモデルを提案する。
次に、自我中心の動画から全体の動きを復元する自我中心のモーションキャプチャーコンポーネントを導入する。
最後に、回収されたポーズをキャラクタモデルに適用し、幾何学がエゴセントリックな視点に忠実に投影するように、テストタイムメッシュの改良を行う。
デザイン選択を検証するために,実人が様々な動作を行う様子を多視点・多視点で一対に表示する,新しい,挑戦的なベンチマークを提案する。
提案手法は,エゴセントリック・フォトリアル・テレプレゼンスへの明確な一歩として,ベースラインと競合する手法に優れることを示す。
詳細、コード、データについては、プロジェクトページを参照してください。
関連論文リスト
- EgoGen: An Egocentric Synthetic Data Generator [53.32942235801499]
EgoGenは新しい合成データジェネレータで、エゴセントリックな知覚タスクのための正確でリッチな地上訓練データを生成することができる。
EgoGenの中心となるのは、仮想人間の自我中心の視覚入力を直接利用して3D環境を感知する、新しい人間のモーション合成モデルである。
我々は、ヘッドマウントカメラのマッピングとローカライゼーション、エゴセントリックカメラトラッキング、エゴセントリックビューからのヒューマンメッシュリカバリの3つのタスクで、EgoGenの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-16T18:55:22Z) - 3D Human Pose Perception from Egocentric Stereo Videos [67.9563319914377]
我々は,エゴセントリックな立体3次元ポーズ推定を改善するためのトランスフォーマーベースの新しいフレームワークを提案する。
本手法は, しゃがんだり座ったりといった困難なシナリオにおいても, 人間のポーズを正確に推定することができる。
私たちはUnrealEgo2、UnrealEgo-RW、およびトレーニングされたモデルをプロジェクトページでリリースします。
論文 参考訳(メタデータ) (2023-12-30T21:21:54Z) - Physics-based Motion Retargeting from Sparse Inputs [73.94570049637717]
商用AR/VR製品はヘッドセットとコントローラーのみで構成されており、ユーザーのポーズのセンサーデータは非常に限られている。
本研究では, 多様な形態のキャラクタに対して, 粗い人間のセンサデータからリアルタイムに動きをターゲットする手法を提案する。
アバターのポーズは、下半身のセンサー情報がないにもかかわらず、驚くほどよくユーザと一致していることを示す。
論文 参考訳(メタデータ) (2023-07-04T21:57:05Z) - EgoHumans: An Egocentric 3D Multi-Human Benchmark [37.375846688453514]
EgoHumansは、エゴセントリックな人間の3Dポーズ推定と追跡の最先端化を図るために、新しいマルチビューマルチヒューマンビデオベンチマークである。
本研究では,エゴセントリックなマルチヒューマン・ベンチマークを構築するために,新しい3Dキャプチャ・セットアップを提案する。
コンシューマグレードのウェアラブルカメラ搭載メガネを、エゴセントリックな視点に活用することで、テニス、フェンシング、バレーボールなどのダイナミックな活動を捉えることができます。
論文 参考訳(メタデータ) (2023-05-25T21:37:36Z) - Ego-Body Pose Estimation via Ego-Head Pose Estimation [22.08240141115053]
エゴセントリックなビデオシーケンスから3次元の人間の動きを推定することは、人間の行動理解において重要な役割を担い、VR/ARに様々な応用がある。
Ego-Head Pose Estimation (EgoEgo) と呼ばれる新しい手法を提案する。
この頭と体のポーズのゆがみは、ペア化されたエゴセントリックなビデオと3D人間の動きでデータセットをトレーニングする必要をなくす。
論文 参考訳(メタデータ) (2022-12-09T02:25:20Z) - UnrealEgo: A New Dataset for Robust Egocentric 3D Human Motion Capture [70.59984501516084]
UnrealEgoは、エゴセントリックな3Dポーズ推定のための、新しい大規模博物学データセットである。
これは、2台の魚眼カメラを備えた高度な眼鏡のコンセプトに基づいており、制約のない環境で使用することができる。
本稿では,ステレオ入力のための2次元キーポイント推定モジュールを考案し,人間のポーズ推定を改善するための簡易かつ効果的なベンチマーク手法を提案する。
論文 参考訳(メタデータ) (2022-08-02T17:59:54Z) - EgoRenderer: Rendering Human Avatars from Egocentric Camera Images [87.96474006263692]
EgoRendererは、ウェアラブルでエゴ中心の魚眼カメラで捉えた人の全身神経アバターをレンダリングするシステムである。
このようなエゴセントリックなイメージからフルボディのアバターをレンダリングすることは、トップダウンのビューと大きな歪みのために、ユニークな課題を生んでいる。
レンダリング処理をテクスチャ合成,ポーズ構築,ニューラルイメージ変換など,いくつかのステップに分解することで,これらの課題に対処する。
論文 参考訳(メタデータ) (2021-11-24T18:33:02Z) - 4D Human Body Capture from Egocentric Video via 3D Scene Grounding [38.3169520384642]
本稿では,モノクラーエゴセントリックビデオから2人称3D人体メッシュの時系列を再構築する新しい課題を紹介する。
エゴセントリックなビデオのユニークな視点と迅速なカメラの動きは、人間の身体を捉えるための技術的な障壁を増す。
論文 参考訳(メタデータ) (2020-11-26T15:17:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。