VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models
- URL: http://arxiv.org/abs/2503.19530v1
- Date: Tue, 25 Mar 2025 10:36:27 GMT
- Title: VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models
- Authors: Suhas G Hegde, Shilpy Kaur, Aruna Tiwari,
- Abstract summary: We propose VectorFit, an effective and easily deployable approach that adaptively trains the singular vectors and biases of pre-trained weight matrices.<n>We demonstrate that the utilization of structural and transformational characteristics of pre-trained weights enables high-rank updates comparable to those of full fine-tuning.
- Score: 0.8875650122536799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Popular PEFT methods achieve parameter efficiency by assuming that incremental weight updates are inherently low-rank, which often leads to a performance gap compared to full fine-tuning. While recent methods have attempted to address this limitation, they typically lack sufficient parameter and memory efficiency. We propose VectorFit, an effective and easily deployable approach that adaptively trains the singular vectors and biases of pre-trained weight matrices. We demonstrate that the utilization of structural and transformational characteristics of pre-trained weights enables high-rank updates comparable to those of full fine-tuning. As a result, VectorFit achieves superior performance with 9X less trainable parameters compared to state-of-the-art PEFT methods. Through extensive experiments over 17 datasets spanning diverse language and vision tasks such as natural language understanding and generation, question answering, image classification, and image generation, we exhibit that VectorFit consistently outperforms baselines, even in extremely low-budget scenarios.
Related papers
- GenFT: A Generative Parameter-Efficient Fine-Tuning Method for Pretrained Foundation Models [23.85784506399565]
Generative Fine-Tuning (GenFT) is a novel method that extracts structured, transferable information from $Delta W$ for efficient $Delta W$ training.<n>Experiments on VTAB-1K, FGVC, and GLUE benchmarks demonstrate that GenFT outperforms state-of-the-art PEFT methods.
arXiv Detail & Related papers (2025-05-21T08:33:26Z) - Transformed Low-rank Adaptation via Tensor Decomposition and Its Applications to Text-to-image Models [32.68721299475496]
Low-Rank Adaptation (LoRA) and its variants have gained significant attention due to their effectiveness.<n>We propose a new PEFT method that combines two classes of adaptations, namely, transform and residual adaptations.<n>Experiments are conducted on fine-tuning Stable Diffusion models in subject-driven and controllable generation.
arXiv Detail & Related papers (2025-01-15T11:10:37Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
Fine-tuning pre-trained models often yields state-of-the-art performance but is computationally expensive when updating all parameters.<n>We propose NEAT, a nonlinear PEFT approach that employs a lightweight neural network to learn a nonlinear transformation of the pre-trained weights.<n>Our theoretical analysis shows that NEAT achieves greater efficiency than LoRA while maintaining equivalent expressivity.
arXiv Detail & Related papers (2024-10-02T17:29:23Z) - SVFit: Parameter-Efficient Fine-Tuning of Large Pre-Trained Models Using Singular Values [12.137869917556415]
Large pre-trained models (LPMs) have demonstrated exceptional performance in diverse natural language processing and computer vision tasks.
fully fine-tuning these models poses substantial memory challenges, particularly in resource-constrained environments.
We propose SVFit, a novel PEFT approach that leverages singular value decomposition (SVD) to low-rank matrices using critical singular values as trainable parameters.
arXiv Detail & Related papers (2024-09-09T08:44:53Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models [5.981614673186146]
We present a novel.
-Efficient Fine-Tuning (PEFT) method, dubbed as Adaptive Freezing of Low Rank Adaptation (AFLoRA)
Specifically, we add a parallel path of trainable low-rank matrices, namely a down-projection and an up-projection matrix, each of which is followed by a feature transformation vector.
Our experimental results demonstrate that we can achieve state-of-the-art performance with an average improvement of up to $0.85%$ as evaluated on GLUE benchmark.
arXiv Detail & Related papers (2024-03-20T03:07:50Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
Various parameter-efficient fine-tuning (PEFT) techniques have been proposed to enable computationally efficient fine-tuning while maintaining model performance.
We present LoRETTA, a framework that significantly reduces trainable parameters through tensor-train decomposition.
LoRETTA achieves comparable or better performance than most widely used PEFT methods with up to $100times$ fewer parameters on the LLaMA-2-7B models.
arXiv Detail & Related papers (2024-02-18T01:20:00Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
We propose an adaptation method which does not backpropagate gradients through the backbone.
We achieve this by designing a lightweight network in parallel that operates on features from the frozen, pretrained backbone.
arXiv Detail & Related papers (2024-02-05T10:55:47Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - WeGeFT: Weight-Generative Fine-Tuning for Multi-Faceted Efficient Adaptation of Large Models [8.481707805559589]
We propose Weight-Generative Fine-Tuning (WeGeFT), a novel approach that learns to generate fine-tuning weights directly from the pretrained weights.<n>This design achieves multi-faceted efficiency in parameters, representations, compute, and memory, while maintaining or exceeding the performance of LoRA and its variants.
arXiv Detail & Related papers (2023-12-01T16:33:57Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z) - Towards Efficient Visual Adaption via Structural Re-parameterization [76.57083043547296]
We propose a parameter-efficient and computational friendly adapter for giant vision models, called RepAdapter.
RepAdapter outperforms full tuning by +7.2% on average and saves up to 25% training time, 20% GPU memory, and 94.6% storage cost of ViT-B/16 on VTAB-1k.
arXiv Detail & Related papers (2023-02-16T06:14:15Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
We propose a.
sparse-efficient Sparse Training (PST) method to reduce the number of trainable parameters during sparse-aware training.
Experiments with diverse networks (i.e., BERT, RoBERTa and GPT-2) demonstrate PST performs on par or better than previous sparsity methods.
arXiv Detail & Related papers (2022-05-23T02:43:45Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.