The potential of LLM-generated reports in DevSecOps
- URL: http://arxiv.org/abs/2410.01899v1
- Date: Wed, 2 Oct 2024 18:01:12 GMT
- Title: The potential of LLM-generated reports in DevSecOps
- Authors: Nikolaos Lykousas, Vasileios Argyropoulos, Fran Casino,
- Abstract summary: Alert fatigue is a common issue faced by software teams using the DevSecOps paradigm.
This paper explores the potential of LLMs in generating actionable security reports.
Integrating these reports into DevSecOps can mitigate attention saturation and alert fatigue.
- Score: 3.4888132404740797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alert fatigue is a common issue faced by software teams using the DevSecOps paradigm. The overwhelming number of warnings and alerts generated by security and code scanning tools, particularly in smaller teams where resources are limited, leads to desensitization and diminished responsiveness to security warnings, potentially exposing systems to vulnerabilities. This paper explores the potential of LLMs in generating actionable security reports that emphasize the financial impact and consequences of detected security issues, such as credential leaks, if they remain unaddressed. A survey conducted among developers indicates that LLM-generated reports significantly enhance the likelihood of immediate action on security issues by providing clear, comprehensive, and motivating insights. Integrating these reports into DevSecOps workflows can mitigate attention saturation and alert fatigue, ensuring that critical security warnings are addressed effectively.
Related papers
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - Trust, but Verify: Evaluating Developer Behavior in Mitigating Security Vulnerabilities in Open-Source Software Projects [0.11999555634662631]
This study investigates vulnerabilities in dependencies of sampled open-source software (OSS) projects.
We have identified common issues in outdated or unmaintained dependencies, that pose significant security risks.
Results suggest that reducing the number of direct dependencies and prioritizing well-established libraries with strong security records are effective strategies for enhancing the software security landscape.
arXiv Detail & Related papers (2024-08-26T13:46:48Z) - Nothing in Excess: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large language models (LLMs) to defend threats from malicious instructions.
Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.
We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - Tamper-Resistant Safeguards for Open-Weight LLMs [57.90526233549399]
We develop a method for building tamper-resistant safeguards into open-weight LLMs.
We find that our method greatly improves tamper-resistance while preserving benign capabilities.
Our results demonstrate that tamper-resistance is a tractable problem.
arXiv Detail & Related papers (2024-08-01T17:59:12Z) - Can LLMs be Fooled? Investigating Vulnerabilities in LLMs [4.927763944523323]
The advent of Large Language Models (LLMs) has garnered significant popularity and wielded immense power across various domains within Natural Language Processing (NLP)
This paper will synthesize the findings from each vulnerability section and propose new directions of research and development.
By understanding the focal points of current vulnerabilities, we can better anticipate and mitigate future risks.
arXiv Detail & Related papers (2024-07-30T04:08:00Z) - Towards Effectively Detecting and Explaining Vulnerabilities Using Large Language Models [17.96542494363619]
Large language models (LLMs) have demonstrated remarkable capabilities in comprehending complex contexts.
In this paper, we conduct a study to investigate the capabilities of LLMs in both detecting and explaining vulnerabilities.
Under specialized fine-tuning for vulnerability explanation, our LLMVulExp not only detects the types of vulnerabilities in the code but also analyzes the code context to generate the cause, location, and repair suggestions.
arXiv Detail & Related papers (2024-06-14T04:01:25Z) - Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices [4.927763944523323]
Large language models (LLMs) have significantly transformed the landscape of Natural Language Processing (NLP)
This research paper thoroughly investigates security and privacy concerns related to LLMs from five thematic perspectives.
The paper recommends promising avenues for future research to enhance the security and risk management of LLMs.
arXiv Detail & Related papers (2024-03-19T07:10:58Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines.
While their capabilities are promising, these agents also introduce novel vulnerabilities that demand careful consideration for safety.
This paper conducts a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - TrustAgent: Towards Safe and Trustworthy LLM-based Agents [50.33549510615024]
This paper presents an Agent-Constitution-based agent framework, TrustAgent, with a focus on improving the LLM-based agent safety.
The proposed framework ensures strict adherence to the Agent Constitution through three strategic components: pre-planning strategy which injects safety knowledge to the model before plan generation, in-planning strategy which enhances safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection.
arXiv Detail & Related papers (2024-02-02T17:26:23Z) - Use of LLMs for Illicit Purposes: Threats, Prevention Measures, and
Vulnerabilities [14.684194175806203]
Large language models (LLMs) can be misused for fraud, impersonation, and the generation of malware.
We present a taxonomy describing the relationship between threats caused by the generative capabilities of LLMs, prevention measures intended to address such threats, and vulnerabilities arising from imperfect prevention measures.
arXiv Detail & Related papers (2023-08-24T14:45:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.