論文の概要: Deep learning assisted high resolution microscopy image processing for phase segmentation in functional composite materials
- arxiv url: http://arxiv.org/abs/2410.01928v2
- Date: Mon, 17 Mar 2025 21:50:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:12:18.246480
- Title: Deep learning assisted high resolution microscopy image processing for phase segmentation in functional composite materials
- Title(参考訳): 機能性複合材料における位相セグメンテーションのためのディープラーニング支援高分解能顕微鏡画像処理
- Authors: Ganesh Raghavendran, Bing Han, Fortune Adekogbe, Shuang Bai, Bingyu Lu, William Wu, Minghao Zhang, Ying Shirley Meng,
- Abstract要約: 本研究は、トレーニングされたU-Netセグメンテーションモデルを用いて、生高分解能電子顕微鏡(TEM)画像から成分と位相セグメンテーションを検出する新しいワークフローを提案する。
開発したモデルでは、成分の検出と位相セグメンテーションの迅速化が可能であり、広範囲なTEM画像の精査に伴う時間的・認知的要求を低減できる。
- 参考スコア(独自算出の注目度): 8.01747783558987
- License:
- Abstract: In the domain of battery research, the processing of high-resolution microscopy images is a challenging task, as it involves dealing with complex images and requires a prior understanding of the components involved. The utilization of deep learning methodologies for image analysis has attracted considerable interest in recent years, with multiple investigations employing such techniques for image segmentation and analysis within the realm of battery research. However, the automated analysis of high-resolution microscopy images for detecting phases and components in composite materials is still an underexplored area. This work proposes a novel workflow for detecting components and phase segmentation from raw high resolution transmission electron microscopy (TEM) images using a trained U-Net segmentation model. The developed model can expedite the detection of components and phase segmentation, diminishing the temporal and cognitive demands associated with scrutinizing an extensive array of TEM images, thereby mitigating the potential for human errors. This approach presents a novel and efficient image analysis approach with broad applicability beyond the battery field and holds potential for application in other related domains characterized by phase and composition distribution, such as alloy production.
- Abstract(参考訳): バッテリー研究の分野では、複雑な画像を処理し、関連するコンポーネントを事前に理解する必要があるため、高解像度の顕微鏡画像の処理は難しい課題である。
近年, 画像解析における深層学習手法の利用が注目されている。
しかし, 複合材料中の相と成分を検出するための高分解能顕微鏡画像の自動解析は, 未探索領域である。
本研究は、トレーニングされたU-Netセグメンテーションモデルを用いて、生高分解能電子顕微鏡(TEM)画像から成分と位相セグメンテーションを検出する新しいワークフローを提案する。
開発したモデルは、成分の検出と位相分割の迅速化を実現し、広範囲にわたるTEM画像の精査に伴う時間的・認知的要求を低減し、人間のエラーの可能性を軽減できる。
本手法では, 電池分野を超えて広い適用性を有する新規かつ効率的な画像解析手法を提案するとともに, 合金製造などの相および組成分布を特徴とする他の領域への応用の可能性を示す。
関連論文リスト
- Multiplex Imaging Analysis in Pathology: a Comprehensive Review on Analytical Approaches and Digital Toolkits [0.7968706282619793]
マルチ多重イメージングは、複数のバイオマーカーを1つのセクションで同時に視覚化することを可能にする。
多重画像からのデータは、前処理、セグメンテーション、特徴抽出、空間解析のための洗練された計算方法を必要とする。
PathMLは、画像分析を効率化するAIベースのプラットフォームで、臨床および研究環境では複雑な解釈がアクセス可能である。
論文 参考訳(メタデータ) (2024-11-01T18:02:41Z) - SaccadeDet: A Novel Dual-Stage Architecture for Rapid and Accurate Detection in Gigapixel Images [50.742420049839474]
SaccadeDetは、人間の目の動きにインスパイアされた、ギガピクセルレベルの物体検出のための革新的なアーキテクチャである。
PANDAデータセットを用いて評価した本手法は,最先端手法の8倍の高速化を実現する。
また、全スライドイメージングへの応用を通じて、ギガピクセルレベルの病理解析に有意な可能性を示す。
論文 参考訳(メタデータ) (2024-07-25T11:22:54Z) - Morphological Profiling for Drug Discovery in the Era of Deep Learning [13.307277432389496]
形態素プロファイリングの分野における最近の進歩を概観する。
このパイプラインでは、ディープラーニングの適用に特に重点を置いています。
論文 参考訳(メタデータ) (2023-12-13T05:08:32Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - A State-of-the-art Survey of U-Net in Microscopic Image Analysis: from
Simple Usage to Structure Mortification [18.66392155060376]
画像解析技術は、疾患、排水処理、環境変化モニタリング分析および畳み込みニューラルネットワーク(CNN)における従来の人工的手法の不都合を解決するために用いられる。
本稿では,U-Netの発展史を包括的にレビューし,U-Netの出現以来の様々なセグメンテーション手法の研究成果を分析する。
論文 参考訳(メタデータ) (2022-02-14T02:52:53Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
本研究の目的は,AIGA-IACTに設定された課題を解決するための機械学習アプリケーションの可能性を検討することである。
The method of Convolutional Neural Networks (CNN) was applied to process and analysis Monte-Carlo eventssimulated with CORSIKA。
論文 参考訳(メタデータ) (2021-12-19T15:17:20Z) - Increasing a microscope's effective field of view via overlapped imaging
and machine learning [4.23935174235373]
この研究は、高効率自動検体分析のために単一のセンサー上で複数の独立した視野を重畳するマルチレンズ顕微鏡イメージングシステムを示す。
論文 参考訳(メタデータ) (2021-10-10T22:52:36Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Deep Learning Segmentation of Complex Features in Atomic-Resolution
Phase Contrast Transmission Electron Microscopy Images [0.8049701904919516]
従来の画像処理ツールを用いた位相コントラストTEM研究のための完全自動解析ルーチンの開発は困難です。
グラフェンの大きなサンプル領域の自動分析には、興味のある構造と望ましくない構造の間のセグメンテーションが鍵となる。
深層学習法は, より汎用的で, より簡単に適用でき, 従来のアルゴリズムよりも精度が高く, 頑健な結果が得られることを示す。
論文 参考訳(メタデータ) (2020-12-09T21:17:34Z) - Image Segmentation Using Deep Learning: A Survey [58.37211170954998]
イメージセグメンテーションは、画像処理とコンピュータビジョンにおいて重要なトピックである。
深層学習モデルを用いた画像セグメンテーション手法の開発を目的とした研究が,これまでに数多く行われている。
論文 参考訳(メタデータ) (2020-01-15T21:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。