TypedThinker: Typed Thinking Improves Large Language Model Reasoning
- URL: http://arxiv.org/abs/2410.01952v1
- Date: Wed, 2 Oct 2024 18:54:45 GMT
- Title: TypedThinker: Typed Thinking Improves Large Language Model Reasoning
- Authors: Danqing Wang, Jianxin Ma, Fei Fang, Lei Li,
- Abstract summary: We propose TypedThinker, a framework that enhances Large Language Models' problem-solving abilities.
TypedThinker addresses two key challenges: selecting appropriate reasoning types for given problems and effectively implementing specific reasoning types.
Experimental results demonstrate significant improvements over baseline models, with accuracy increases of 3.4% for Mistral 7B and 16.7% for LLaMA3 8B.
- Score: 44.8904486513791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite significant advancements in the reasoning capabilities of Large Language Models (LLMs), the lack of diverse reasoning solutions often makes them trapped in a limited solution search area. In this paper, we propose TypedThinker, a novel framework that enhances LLMs' problem-solving abilities by incorporating multiple reasoning types (deductive, inductive, abductive, and analogical). Our analysis across four benchmarks reveals that different reasoning types uniquely solve distinct sets of problems, highlighting the importance of diverse thinking approaches. TypedThinker addresses two key challenges: selecting appropriate reasoning types for given problems and effectively implementing specific reasoning types. Through self-training on successful experiences, TypedThinker learns an implicit policy for reasoning type selection and application. Experimental results demonstrate significant improvements over baseline models, with accuracy increases of 3.4% for Mistral 7B and 16.7% for LLaMA3 8B across four reasoning benchmarks. Notably, TypedThinker shows effective generalization to new benchmarks and can further enhance the reasoning capability of powerful models like GPT-4o. The code is released at https://github.com/dqwang122/ThinkHub.
Related papers
- Seemingly Plausible Distractors in Multi-Hop Reasoning: Are Large Language Models Attentive Readers? [6.525065859315515]
We investigate whether Large Language Models (LLMs) are prone to exploiting simplifying cues in multi-hop reasoning benchmarks.
Motivated by this finding, we propose a challenging multi-hop reasoning benchmark, by generating seemingly plausible multi-hop reasoning chains.
We find that their performance to perform multi-hop reasoning is affected, as indicated by up to 45% relative decrease in F1 score when presented with such seemingly plausible alternatives.
arXiv Detail & Related papers (2024-09-08T19:22:58Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
We propose a novel conceptualization framework that forces models to perform conceptual reasoning on abstract questions.
We show that existing large language models fall short on conceptual reasoning, dropping 9% to 28% on various benchmarks.
We then discuss how models can improve since high-level abstract reasoning is key to unbiased and generalizable decision-making.
arXiv Detail & Related papers (2024-03-30T00:53:53Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - Investigating the Efficacy of Large Language Models in Reflective
Assessment Methods through Chain of Thoughts Prompting [0.2552922646705803]
Chain of Thought(CoT) prompting method has been proposed as a means to enhance LLMs' proficiency in complex reasoning tasks.
The primary aim of this research is to assess how well four language models can grade reflective essays of third-year medical students.
arXiv Detail & Related papers (2023-09-30T06:25:27Z) - Tree of Thoughts: Deliberate Problem Solving with Large Language Models [52.31950122881687]
We introduce a new framework for language model inference, Tree of Thoughts (ToT)
ToT generalizes over the popular Chain of Thought approach to prompting language models.
Our experiments show that ToT significantly enhances language models' problem-solving abilities.
arXiv Detail & Related papers (2023-05-17T23:16:17Z) - IRRGN: An Implicit Relational Reasoning Graph Network for Multi-turn
Response Selection [4.471148909362883]
Implicit Reasoning to Graph Network aims to implicitly extract between utterances, as well as utterances and options.
Model surpasses human performance for the first time on the MuTual dataset.
arXiv Detail & Related papers (2022-12-01T13:17:25Z) - Making Large Language Models Better Reasoners with Step-Aware Verifier [49.16750018427259]
DIVERSE (Diverse Verifier on Reasoning Step) is a novel approach that further enhances the reasoning capability of language models.
We evaluate DIVERSE on the latest language model code-davinci and show that it achieves new state-of-the-art results on six of eight reasoning benchmarks.
arXiv Detail & Related papers (2022-06-06T03:38:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.