How Reliable Is Human Feedback For Aligning Large Language Models?
- URL: http://arxiv.org/abs/2410.01957v1
- Date: Wed, 2 Oct 2024 19:03:42 GMT
- Title: How Reliable Is Human Feedback For Aligning Large Language Models?
- Authors: Min-Hsuan Yeh, Leitian Tao, Jeffrey Wang, Xuefeng Du, Yixuan Li,
- Abstract summary: We conduct a comprehensive study and provide an in-depth analysis of human feedback data.
We identify six key sources of unreliability, such as mis-labeling, subjective preferences, differing criteria and thresholds for helpfulness and harmlessness.
We propose Source-Aware Cleaning, an automatic data-cleaning method guided by the insight of our qualitative analysis, to significantly improve data quality.
- Score: 24.66495636695214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most alignment research today focuses on designing new learning algorithms using datasets like Anthropic-HH, assuming human feedback data is inherently reliable. However, little attention has been given to the qualitative unreliability of human feedback and its impact on alignment. To address this gap, we conduct a comprehensive study and provide an in-depth analysis of human feedback data. We assess feedback reliability using a committee of gold reward models, revealing that over 25% of the dataset shows low or no agreement with these models, implying a high degree of unreliability. Through a qualitative analysis, we identify six key sources of unreliability, such as mis-labeling, subjective preferences, differing criteria and thresholds for helpfulness and harmlessness, etc. Lastly, to mitigate unreliability, we propose Source-Aware Cleaning, an automatic data-cleaning method guided by the insight of our qualitative analysis, to significantly improve data quality. Extensive experiments demonstrate that models trained on our cleaned dataset, HH-Clean, substantially outperform those trained on the original dataset. We release HH-Clean to support more reliable LLM alignment evaluation in the future.
Related papers
- Quality Matters: Evaluating Synthetic Data for Tool-Using LLMs [11.24476329991465]
Training large language models (LLMs) for external tool usage is a rapidly expanding field.
The absence of systematic data quality checks poses complications for properly training and testing models.
We propose two approaches for assessing the reliability of data for training LLMs to use external tools.
arXiv Detail & Related papers (2024-09-24T17:20:02Z) - Towards Faithful and Robust LLM Specialists for Evidence-Based Question-Answering [10.624293689624151]
We investigate how to robustly fine-tune Large Language Models (LLMs) for better source quality and answer attributability.
Specifically, we introduce a data generation pipeline with automated data quality filters, which can synthesize diversified high-quality training and testing data at scale.
Extensive evaluation shows that fine-tuning on synthetic data improves performance on both in- and out-of-distribution.
arXiv Detail & Related papers (2024-02-13T08:12:48Z) - Improving Machine Translation with Human Feedback: An Exploration of Quality Estimation as a Reward Model [75.66013048128302]
In this work, we investigate the potential of employing the QE model as the reward model to predict human preferences for feedback training.
We first identify the overoptimization problem during QE-based feedback training, manifested as an increase in reward while translation quality declines.
To address the problem, we adopt a simple yet effective method that uses rules to detect the incorrect translations and assigns a penalty term to the reward scores of them.
arXiv Detail & Related papers (2024-01-23T16:07:43Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instruct can acquire pointwise grading critiques with pseudo references and revise these critiques via multi-path prompting.
CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines.
arXiv Detail & Related papers (2023-11-30T16:52:42Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
We introduce TRIAGE, a novel data characterization framework tailored to regression tasks and compatible with a broad class of regressors.
TRIAGE utilizes conformal predictive distributions to provide a model-agnostic scoring method, the TRIAGE score.
We show that TRIAGE's characterization is consistent and highlight its utility to improve performance via data sculpting/filtering, in multiple regression settings.
arXiv Detail & Related papers (2023-10-29T10:31:59Z) - Constructive Large Language Models Alignment with Diverse Feedback [76.9578950893839]
We introduce Constructive and Diverse Feedback (CDF) as a novel method to enhance large language models alignment.
We exploit critique feedback for easy problems, refinement feedback for medium problems, and preference feedback for hard problems.
By training our model with this diversified feedback, we achieve enhanced alignment performance while using less training data.
arXiv Detail & Related papers (2023-10-10T09:20:14Z) - Calibrating LLM-Based Evaluator [92.17397504834825]
We propose AutoCalibrate, a multi-stage, gradient-free approach to calibrate and align an LLM-based evaluator toward human preference.
Instead of explicitly modeling human preferences, we first implicitly encompass them within a set of human labels.
Our experiments on multiple text quality evaluation datasets illustrate a significant improvement in correlation with expert evaluation through calibration.
arXiv Detail & Related papers (2023-09-23T08:46:11Z) - RLBoost: Boosting Supervised Models using Deep Reinforcement Learning [0.0]
We present RLBoost, an algorithm that uses deep reinforcement learning strategies to evaluate a particular dataset and obtain a model capable of estimating the quality of any new data.
The results of the article show that this model obtains better and more stable results than other state-of-the-art algorithms such as LOO, DataShapley or DVRL.
arXiv Detail & Related papers (2023-05-23T14:38:33Z) - Exploring the Efficacy of Automatically Generated Counterfactuals for
Sentiment Analysis [17.811597734603144]
We propose an approach to automatically generating counterfactual data for data augmentation and explanation.
A comprehensive evaluation on several different datasets and using a variety of state-of-the-art benchmarks demonstrate how our approach can achieve significant improvements in model performance.
arXiv Detail & Related papers (2021-06-29T10:27:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.