Scale-Invariant Learning-to-Rank
- URL: http://arxiv.org/abs/2410.01959v1
- Date: Wed, 2 Oct 2024 19:05:12 GMT
- Title: Scale-Invariant Learning-to-Rank
- Authors: Alessio Petrozziello, Christian Sommeregger, Ye-Sheen Lim,
- Abstract summary: At Expedia, learning-to-rank models play a key role in sorting and presenting information more relevant to users.
A major challenge in deploying these models is ensuring consistent feature scaling between training and production data.
We introduce a scale-invariant LTR framework which combines a deep and a wide neural network to mathematically guarantee scale-invariance in the model at both training and prediction time.
We evaluate our framework in simulated real-world scenarios with injected feature scale issues by perturbing the test set at prediction time, and show that even with inconsistent train-test scaling, using framework achieves better performance than
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: At Expedia, learning-to-rank (LTR) models plays a key role on our website in sorting and presenting information more relevant to users, such as search filters, property rooms, amenities, and images. A major challenge in deploying these models is ensuring consistent feature scaling between training and production data, as discrepancies can lead to unreliable rankings when deployed. Normalization techniques like feature standardization and batch normalization could address these issues but are impractical in production due to latency impacts and the difficulty of distributed real-time inference. To address consistent feature scaling issue, we introduce a scale-invariant LTR framework which combines a deep and a wide neural network to mathematically guarantee scale-invariance in the model at both training and prediction time. We evaluate our framework in simulated real-world scenarios with injected feature scale issues by perturbing the test set at prediction time, and show that even with inconsistent train-test scaling, using framework achieves better performance than without.
Related papers
- Locally Adaptive One-Class Classifier Fusion with Dynamic $\ell$p-Norm Constraints for Robust Anomaly Detection [17.93058599783703]
We introduce a framework that dynamically adjusts fusion weights based on local data characteristics.
Our method incorporates an interior-point optimization technique that significantly improves computational efficiency.
The framework's ability to adapt to local data patterns while maintaining computational efficiency makes it particularly valuable for real-time applications.
arXiv Detail & Related papers (2024-11-10T09:57:13Z) - CALICO: Confident Active Learning with Integrated Calibration [11.978551396144532]
We propose an AL framework that self-calibrates the confidence used for sample selection during the training process.
We show improved classification performance compared to a softmax-based classifier with fewer labeled samples.
arXiv Detail & Related papers (2024-07-02T15:05:19Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - Phantom Embeddings: Using Embedding Space for Model Regularization in
Deep Neural Networks [12.293294756969477]
The strength of machine learning models stems from their ability to learn complex function approximations from data.
The complex models tend to memorize the training data, which results in poor regularization performance on test data.
We present a novel approach to regularize the models by leveraging the information-rich latent embeddings and their high intra-class correlation.
arXiv Detail & Related papers (2023-04-14T17:15:54Z) - Stabilizing and Improving Federated Learning with Non-IID Data and
Client Dropout [15.569507252445144]
Label distribution skew induced data heterogeniety has been shown to be a significant obstacle that limits the model performance in federated learning.
We propose a simple yet effective framework by introducing a prior-calibrated softmax function for computing the cross-entropy loss.
The improved model performance over existing baselines in the presence of non-IID data and client dropout is demonstrated.
arXiv Detail & Related papers (2023-03-11T05:17:59Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Self-Damaging Contrastive Learning [92.34124578823977]
Unlabeled data in reality is commonly imbalanced and shows a long-tail distribution.
This paper proposes a principled framework called Self-Damaging Contrastive Learning to automatically balance the representation learning without knowing the classes.
Our experiments show that SDCLR significantly improves not only overall accuracies but also balancedness.
arXiv Detail & Related papers (2021-06-06T00:04:49Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.