論文の概要: Review Non-convex Optimization Method for Machine Learning
- arxiv url: http://arxiv.org/abs/2410.02017v1
- Date: Wed, 2 Oct 2024 20:34:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:34:57.618019
- Title: Review Non-convex Optimization Method for Machine Learning
- Title(参考訳): 機械学習のための非凸最適化手法の見直し
- Authors: Greg B Fotopoulos, Paul Popovich, Nicholas Hall Papadopoulos,
- Abstract要約: 非局所最適化は、特にディープニューラルネットワークやサドルマシンのような複雑なモデルにおいて、機械学習を進める上で重要なツールである。
機械学習における非局所最適化手法と非局所最適化の応用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-convex optimization is a critical tool in advancing machine learning, especially for complex models like deep neural networks and support vector machines. Despite challenges such as multiple local minima and saddle points, non-convex techniques offer various pathways to reduce computational costs. These include promoting sparsity through regularization, efficiently escaping saddle points, and employing subsampling and approximation strategies like stochastic gradient descent. Additionally, non-convex methods enable model pruning and compression, which reduce the size of models while maintaining performance. By focusing on good local minima instead of exact global minima, non-convex optimization ensures competitive accuracy with faster convergence and lower computational overhead. This paper examines the key methods and applications of non-convex optimization in machine learning, exploring how it can lower computation costs while enhancing model performance. Furthermore, it outlines future research directions and challenges, including scalability and generalization, that will shape the next phase of non-convex optimization in machine learning.
- Abstract(参考訳): 非凸最適化は、特にディープニューラルネットワークやサポートベクターマシンのような複雑なモデルにおいて、機械学習を進める上で重要なツールである。
複数の局所小数点やサドルポイントといった課題にもかかわらず、非凸技術は計算コストを減らすための様々な経路を提供する。
これらの中には、正規化によるスパーシリティの促進、サドルポイントの効率的なエスケープ、確率勾配降下のようなサブサンプリングと近似戦略の採用などが含まれる。
さらに、非凸法はモデルプルーニングと圧縮を可能にし、性能を維持しながらモデルのサイズを小さくする。
正確なグローバルなミニマではなく、良い局所ミニマに焦点を当てることで、非凸最適化はより高速な収束と計算オーバーヘッドの低減による競合精度を保証する。
本稿では,機械学習における非凸最適化の鍵となる手法と応用について検討し,モデル性能を向上しながら計算コストを下げる方法について検討する。
さらに、拡張性と一般化を含む将来の研究の方向性と課題を概説し、機械学習における非凸最適化の次のフェーズを形成する。
関連論文リスト
- Optimizing Curvature Learning for Robust Hyperbolic Deep Learning in Computer Vision [3.3964154468907486]
本稿では、一般的な学習アルゴリズムのための改良されたスキーマと、多様体の可変代表半径内への埋め込みを制約する新しい正規化手法を提案する。
提案手法は,より大規模な双曲モデルを実現するとともに,直接分類と階層的計量学習の両タスクにおいて一貫した性能向上を示す。
論文 参考訳(メタデータ) (2024-05-22T20:30:14Z) - Learning to optimize with convergence guarantees using nonlinear system theory [0.4143603294943439]
本研究では,スムーズな目的関数に対するアルゴリズムの非制約パラメトリゼーションを提案する。
特に、私たちのフレームワークは自動微分ツールと直接互換性があります。
論文 参考訳(メタデータ) (2024-03-14T13:40:26Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
本稿では,ハイパーキューブやトーラス上のスムーズな関数を扱う証明書を用いた非キューブ最適化手法を提案する。
スペクトルの減衰に固有の対象関数の正則性を活用することにより、正確な証明を取得し、高度で強力なニューラルネットワークを活用することができる。
論文 参考訳(メタデータ) (2023-06-26T09:42:59Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - Improving Gradient Methods via Coordinate Transformations: Applications to Quantum Machine Learning [0.0]
機械学習アルゴリズムは勾配降下などの勾配に基づく最適化アルゴリズムに大きく依存している。
全体的な性能は、局所的なミニマと不毛の高原の出現に依存する。
本稿では,これらの手法の全般的な性能向上を図り,バレンプラトー効果と局所ミニマ効果を緩和する汎用戦略を提案する。
論文 参考訳(メタデータ) (2023-04-13T18:26:05Z) - A Particle-based Sparse Gaussian Process Optimizer [5.672919245950197]
本稿では,下降の動的過程を利用した新しいスワム・スワムベースのフレームワークを提案する。
このアプローチの最大の利点は、降下を決定する前に現在の状態についてより深い探索を行うことである。
論文 参考訳(メタデータ) (2022-11-26T09:06:15Z) - Algorithmic Foundations of Empirical X-risk Minimization [51.58884973792057]
この原稿は、機械学習とAIの新しい最適化フレームワーク、bf empirical X-risk baseline (EXM)を紹介している。
Xリスク(X-risk)は、構成測度または目的の族を表すために導入された用語である。
論文 参考訳(メタデータ) (2022-06-01T12:22:56Z) - Accelerated Proximal Alternating Gradient-Descent-Ascent for Nonconvex
Minimax Machine Learning [12.069630105460766]
AltGDA(Alternating Table-descentascent)は、様々な機械学習アプリケーションで広く使われている計算最適化アルゴリズムである。
本論文では,最小限の最適化問題を解くために,単一ループの高速なループ勾配計算アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-12-22T04:33:27Z) - Why Do Local Methods Solve Nonconvex Problems? [54.284687261929115]
非使用最適化は、現代の機械学習においてユビキタスである。
機械学習問題の場合、厳格に定式化します。
我々はこの現象の統一的な説明を仮定する。
論文 参考訳(メタデータ) (2021-03-24T19:34:11Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
本稿では、勾配のないミニマックス最適化問題の大きさを非強設定で表現する。
本稿では,新しいゼロ階分散還元降下アルゴリズムが,クエリの複雑さを最もよく表すことを示す。
論文 参考訳(メタデータ) (2020-06-16T17:55:46Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。