論文の概要: Emo3D: Metric and Benchmarking Dataset for 3D Facial Expression Generation from Emotion Description
- arxiv url: http://arxiv.org/abs/2410.02049v1
- Date: Wed, 2 Oct 2024 21:31:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 09:15:24.942262
- Title: Emo3D: Metric and Benchmarking Dataset for 3D Facial Expression Generation from Emotion Description
- Title(参考訳): Emo3D:感情記述による3次元表情生成のためのメトリクスとベンチマークデータセット
- Authors: Mahshid Dehghani, Amirahmad Shafiee, Ali Shafiei, Neda Fallah, Farahmand Alizadeh, Mohammad Mehdi Gholinejad, Hamid Behroozi, Jafar Habibi, Ehsaneddin Asgari,
- Abstract要約: Emo3Dは、人間の感情の幅広い範囲にまたがる広範な「テキスト画像表現データセット」である。
我々は多種多様なテキスト記述を生成し、感情表現の幅広い範囲を捉えやすくする。
エモ3D」はアニメーションデザイン、バーチャルリアリティ、感情的な人間とコンピュータのインタラクションに優れた応用がある。
- 参考スコア(独自算出の注目度): 3.52270271101496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing 3D facial emotion modeling have been constrained by limited emotion classes and insufficient datasets. This paper introduces "Emo3D", an extensive "Text-Image-Expression dataset" spanning a wide spectrum of human emotions, each paired with images and 3D blendshapes. Leveraging Large Language Models (LLMs), we generate a diverse array of textual descriptions, facilitating the capture of a broad spectrum of emotional expressions. Using this unique dataset, we conduct a comprehensive evaluation of language-based models' fine-tuning and vision-language models like Contranstive Language Image Pretraining (CLIP) for 3D facial expression synthesis. We also introduce a new evaluation metric for this task to more directly measure the conveyed emotion. Our new evaluation metric, Emo3D, demonstrates its superiority over Mean Squared Error (MSE) metrics in assessing visual-text alignment and semantic richness in 3D facial expressions associated with human emotions. "Emo3D" has great applications in animation design, virtual reality, and emotional human-computer interaction.
- Abstract(参考訳): 既存の3次元顔感情モデリングは、限られた感情クラスと不十分なデータセットによって制約されている。
本稿では、人間の感情の幅広い範囲にまたがる広範な「テキスト画像表現データセット」である「Emo3D」について紹介する。
LLM(Large Language Models)を活用することで,多種多様なテキスト記述が生成され,幅広い感情表現の獲得が容易になる。
このユニークなデータセットを用いて、3次元表情合成のための変換言語画像事前学習(CLIP)のような言語モデルによる微調整および視覚言語モデルの包括的評価を行う。
また,この課題に対する新たな評価基準を導入し,伝達された感情をより直接的に測定する。
新しい評価指標であるEmo3Dは、人間の感情に関連する3次元表情における視覚的テキストアライメントと意味的リッチネスを評価する上で、平均二乗誤差(MSE)指標よりも優れていることを示す。
エモ3D」はアニメーションデザイン、バーチャルリアリティ、感情的な人間とコンピュータのインタラクションに優れた応用がある。
関連論文リスト
- MMHead: Towards Fine-grained Multi-modal 3D Facial Animation [68.04052669266174]
大規模なマルチモーダル3次元顔アニメーションデータセットMMHeadを構築した。
MMHeadは、49時間の3D顔の動きシーケンス、音声、リッチな階層的なテキストアノテーションで構成されている。
MMHeadデータセットに基づいて,テキストによる3次元対話ヘッドアニメーションとテキストから3次元の顔の動き生成という,2つの新しいタスクのベンチマークを構築した。
論文 参考訳(メタデータ) (2024-10-10T09:37:01Z) - EmoTalk3D: High-Fidelity Free-View Synthesis of Emotional 3D Talking Head [30.138347111341748]
本稿では,3次元音声頭部を制御可能な感情で合成する新しい手法を提案する。
本モデルでは,生成した音声の感情を制御可能とし,広視野で表現することができる。
実験により,高忠実度・感情制御可能な3次元音声頭部の創出におけるアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2024-08-01T05:46:57Z) - EmoVOCA: Speech-Driven Emotional 3D Talking Heads [12.161006152509653]
EmoVOCAと呼ばれる合成データセットを作成するための革新的なデータ駆動手法を提案する。
次に,3次元顔,音声ファイル,感情ラベル,強度値を入力として受け入れる感情的3次元音声ヘッドジェネレータを設計,訓練し,顔の表情特性で音声同期唇の動きをアニメーション化することを学ぶ。
論文 参考訳(メタデータ) (2024-03-19T16:33:26Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - EmoSet: A Large-scale Visual Emotion Dataset with Rich Attributes [53.95428298229396]
リッチ属性を付加した最初の大規模視覚感情データセットであるEmoSetを紹介する。
EmoSetは合計330万枚の画像で構成され、そのうち118,102枚は人間のアノテーションによって慎重にラベル付けされている。
心理学的な研究によって動機付けられ、感情のカテゴリに加えて、各画像には記述可能な感情特性のセットが注釈付けされている。
論文 参考訳(メタデータ) (2023-07-16T06:42:46Z) - EmoTalk: Speech-Driven Emotional Disentanglement for 3D Face Animation [28.964917860664492]
音声駆動型3D顔アニメーションは、音声の内容と感情にマッチする現実的な表情を生成することを目的としている。
本稿では,3次元表情を豊かに表現するために,音声のさまざまな感情をアンタングルするエンド・ツー・エンドニューラルネットワークを提案する。
我々のアプローチは最先端の手法より優れ、より多様な顔の動きを示す。
論文 参考訳(メタデータ) (2023-03-20T13:22:04Z) - HUMANISE: Language-conditioned Human Motion Generation in 3D Scenes [54.61610144668777]
本稿では,3次元シーンで3次元人間の動きを生成できる新しいシーン・アンド・ランゲージ・コンディショニング・ジェネレーション・モデルを提案する。
実験により,我々のモデルは3次元シーンにおいて多様で意味的に一貫した人間の動きを生成できることを示した。
論文 参考訳(メタデータ) (2022-10-18T10:14:11Z) - EMOCA: Emotion Driven Monocular Face Capture and Animation [59.15004328155593]
本稿では,学習中の感情の深層的一貫性を損なうことによって,再構成された3次元表現が入力画像に表現された表現と一致することを確実にする。
In-the-wild emotion recognitionのタスクでは、人間の行動を分析する上での3D幾何の価値を強調しながら、最も優れた画像ベースの手法と同等に幾何学的アプローチを実践しています。
論文 参考訳(メタデータ) (2022-04-24T15:58:35Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Real-time Facial Expression Recognition "In The Wild'' by Disentangling
3D Expression from Identity [6.974241731162878]
本稿では,1枚のRGB画像から人間の感情認識を行う新しい手法を提案する。
顔のダイナミックス、アイデンティティ、表情、外観、3Dポーズのバリエーションに富んだ大規模な顔ビデオデータセットを構築した。
提案するフレームワークは毎秒50フレームで動作し、3次元表現変動のパラメータを頑健に推定することができる。
論文 参考訳(メタデータ) (2020-05-12T01:32:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。