論文の概要: BayesCNS: A Unified Bayesian Approach to Address Cold Start and Non-Stationarity in Search Systems at Scale
- arxiv url: http://arxiv.org/abs/2410.02126v1
- Date: Thu, 3 Oct 2024 01:14:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 08:35:44.806539
- Title: BayesCNS: A Unified Bayesian Approach to Address Cold Start and Non-Stationarity in Search Systems at Scale
- Title(参考訳): BayesCNS: 大規模検索システムにおけるコールドスタートと非定常性に対処するための統一ベイズ的アプローチ
- Authors: Randy Ardywibowo, Rakesh Sunki, Lucy Kuo, Sankalp Nayak,
- Abstract要約: BayesCNSは、大規模検索システムにおけるコールドスタートおよび非定常分布シフトを処理するように設計されている。
BayesCNSは、オンラインに集められた新しいユーザーインタラクションを継続的に更新するユーザとイテムのインタラクションの事前分布を推定することで、これを達成している。
このオンライン学習手順はランサーモデルによりガイドされ、コンテキスト情報を用いて関連項目の効率的な探索を可能にする。
- 参考スコア(独自算出の注目度): 1.1634177851893535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information Retrieval (IR) systems used in search and recommendation platforms frequently employ Learning-to-Rank (LTR) models to rank items in response to user queries. These models heavily rely on features derived from user interactions, such as clicks and engagement data. This dependence introduces cold start issues for items lacking user engagement and poses challenges in adapting to non-stationary shifts in user behavior over time. We address both challenges holistically as an online learning problem and propose BayesCNS, a Bayesian approach designed to handle cold start and non-stationary distribution shifts in search systems at scale. BayesCNS achieves this by estimating prior distributions for user-item interactions, which are continuously updated with new user interactions gathered online. This online learning procedure is guided by a ranker model, enabling efficient exploration of relevant items using contextual information provided by the ranker. We successfully deployed BayesCNS in a large-scale search system and demonstrated its efficacy through comprehensive offline and online experiments. Notably, an online A/B experiment showed a 10.60% increase in new item interactions and a 1.05% improvement in overall success metrics over the existing production baseline.
- Abstract(参考訳): 検索やレコメンデーションプラットフォームで使用される情報検索(IR)システムでは、ユーザクエリに応じてアイテムをランク付けするためにLTR(Learning-to-Rank)モデルが頻繁に使用される。
これらのモデルは、クリックやエンゲージメントデータといったユーザーインタラクションに由来する機能に大きく依存している。
この依存は、ユーザエンゲージメントに欠ける項目に対するコールドスタートの問題を導入し、時間の経過とともにユーザ行動の定常的変化に適応する上での課題を提起する。
本稿では,オンライン学習問題として両課題に一様に対処し,大規模検索システムにおけるコールドスタートおよび非定常分布シフトを処理するベイズ型アプローチであるベイズCNSを提案する。
BayesCNSは、オンラインに集められた新しいユーザーインタラクションを継続的に更新するユーザとイテムのインタラクションの事前分布を推定することで、これを達成している。
このオンライン学習手順は、ローダモデルによりガイドされ、ローダが提供するコンテキスト情報を用いて、関連する項目の効率的な探索を可能にする。
我々はベイズCNSを大規模検索システムに導入し、オフラインおよびオンラインの総合実験を通じてその効果を実証した。
特に、オンラインのA/B実験では、新しいアイテムインタラクションが10.60%増加し、既存のプロダクションベースラインよりも総合的な成功指標が1.05%改善した。
関連論文リスト
- Online Matching: A Real-time Bandit System for Large-scale
Recommendations [23.954049092470548]
Online Matchingは、ユーザのアイテムに対する直接的なフィードバックをリアルタイムで学習する、スケーラブルなクローズドループバンディットシステムである。
Diag-LinUCBはLinUCBアルゴリズムの新たな拡張であり、スケーラブルでタイムリーな方法で帯域幅パラメータの分散更新を可能にする。
論文 参考訳(メタデータ) (2023-07-29T05:46:27Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Algorithm Design for Online Meta-Learning with Task Boundary Detection [63.284263611646]
非定常環境におけるタスクに依存しないオンラインメタ学習のための新しいアルゴリズムを提案する。
まず,タスクスイッチと分散シフトの簡易かつ効果的な2つの検出機構を提案する。
軽度条件下では,線形タスク平均的後悔がアルゴリズムに対して達成可能であることを示す。
論文 参考訳(メタデータ) (2023-02-02T04:02:49Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
本稿では,RNN学習フレームワークとアテンションモデルからなる,スケーラブルなハイブリッド学習モデルを提案する。
新たな最適化のステップとして、1つのRNNパスに複数の短いユーザシーケンスをトレーニングバッチ内に収める。
また、マルチセッションパーソナライズされた検索ランキングにおける非政治強化学習の利用についても検討する。
論文 参考訳(メタデータ) (2022-02-01T06:52:40Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - Click-Through Rate Prediction Using Graph Neural Networks and Online
Learning [0.0]
CTR予測精度のわずかな改善は、広告業界に数百万ドルの収益を追加すると言及されています。
このプロジェクトは、グラフニューラルネットワークとオンライン学習アルゴリズムを使用したCTR予測器の構築に関心がある。
論文 参考訳(メタデータ) (2021-05-09T01:35:49Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z) - Improving Conversational Question Answering Systems after Deployment
using Feedback-Weighted Learning [69.42679922160684]
本稿では,二元的ユーザフィードバックを用いた初期教師付きシステムを改善するために,重要サンプリングに基づくフィードバック重み付き学習を提案する。
当社の作業は,実際のユーザとのインタラクションを活用し,デプロイ後の会話システムを改善する可能性を開くものだ。
論文 参考訳(メタデータ) (2020-11-01T19:50:34Z) - Zero-Shot Heterogeneous Transfer Learning from Recommender Systems to
Cold-Start Search Retrieval [30.95373255143698]
本稿では,学習知識を推薦システムコンポーネントから伝達し,コンテンツプラットフォームの検索コンポーネントを改善するZero-Shot Heterogeneous Transfer Learningフレームワークを提案する。
弊社は、Googleから世界最大の検索とレコメンデーションシステムのひとつで、オンラインとオフラインで実験を行い、得られた結果と教訓を提示する。
論文 参考訳(メタデータ) (2020-08-07T01:22:56Z) - Learning to Rank in the Position Based Model with Bandit Feedback [3.9121134770873742]
本稿では,LinUCB と Linear Thompson Sampling の2つのよく知られたアルゴリズムの拡張を提案する。
生産環境におけるバイアスを考慮し,位置ベースクリックモデルを用いる。
論文 参考訳(メタデータ) (2020-04-27T19:12:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。