Buckle Up: Robustifying LLMs at Every Customization Stage via Data Curation
- URL: http://arxiv.org/abs/2410.02220v2
- Date: Fri, 4 Oct 2024 15:39:14 GMT
- Title: Buckle Up: Robustifying LLMs at Every Customization Stage via Data Curation
- Authors: Xiaoqun Liu, Jiacheng Liang, Luoxi Tang, Chenyu You, Muchao Ye, Zhaohan Xi,
- Abstract summary: Large language models (LLMs) are extensively adapted for downstream applications through a process known as "customization"
Recent studies have revealed a vulnerability that tuning LLMs with malicious samples can compromise their robustness and amplify harmful content, an attack known as "jailbreaking"
- Score: 20.176424063726277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are extensively adapted for downstream applications through a process known as "customization," with fine-tuning being a common method for integrating domain-specific expertise. However, recent studies have revealed a vulnerability that tuning LLMs with malicious samples can compromise their robustness and amplify harmful content, an attack known as "jailbreaking." To mitigate such attack, we propose an effective defensive framework utilizing data curation to revise commonsense texts and enhance their safety implication from the perspective of LLMs. The curated texts can mitigate jailbreaking attacks at every stage of the customization process: before customization to immunize LLMs against future jailbreak attempts, during customization to neutralize jailbreaking risks, or after customization to restore the compromised models. Since the curated data strengthens LLMs through the standard fine-tuning workflow, we do not introduce additional modules during LLM inference, thereby preserving the original customization process. Experimental results demonstrate a substantial reduction in jailbreaking effects, with up to a 100% success in generating responsible responses. Notably, our method is effective even with commonsense texts, which are often more readily available than safety-relevant data. With the every-stage defensive framework and supporting experimental performance, this work represents a significant advancement in mitigating jailbreaking risks and ensuring the secure customization of LLMs.
Related papers
- Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
We introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability.
Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100% ASR on various open-source LLMs.
It exhibits strong attack transferability to closed-source models, achieving 99% ASR on GPT-3.5 and 49% ASR on GPT-4, despite being optimized solely on Llama3.
arXiv Detail & Related papers (2024-10-24T06:36:12Z) - RePD: Defending Jailbreak Attack through a Retrieval-based Prompt Decomposition Process [23.66988994636578]
We introduce RePD, an innovative attack framework designed to mitigate the risk of jailbreak attacks on large language models (LLMs)
RePD operates on a one-shot learning model, wherein it accesses a database of jailbreak prompt templates to identify and decompose harmful inquiries embedded within user prompts.
We have demonstrated the efficacy of our proposed RePD in enhancing the resilience of LLMs against jailbreak attacks, without compromising their performance in responding to typical user requests.
arXiv Detail & Related papers (2024-10-11T09:39:11Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
This paper introduces Virtual Context, which leverages special tokens, previously overlooked in LLM security, to improve jailbreak attacks.
Comprehensive evaluations show that Virtual Context-assisted jailbreak attacks can improve the success rates of four widely used jailbreak methods by approximately 40%.
arXiv Detail & Related papers (2024-06-28T11:35:54Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Robustifying Safety-Aligned Large Language Models through Clean Data Curation [11.273749179260468]
Large language models (LLMs) are vulnerable when trained on datasets containing harmful content.
In this paper, we propose a data curation framework designed to counter adversarial impacts in both scenarios.
arXiv Detail & Related papers (2024-05-24T04:50:38Z) - Protecting Your LLMs with Information Bottleneck [20.870610473199125]
We introduce the Information Bottleneck Protector (IBProtector), a defense mechanism grounded in the information bottleneck principle.
The IBProtector selectively compresses and perturbs prompts, facilitated by a lightweight and trainable extractor.
Our empirical evaluations show that IBProtector outperforms current defense methods in mitigating jailbreak attempts.
arXiv Detail & Related papers (2024-04-22T08:16:07Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
Large Language Models (LLMs) have gained widespread adoption across various domains, including chatbots and auto-task completion agents.
These models are susceptible to safety vulnerabilities such as jailbreaking, prompt injection, and privacy leakage attacks.
This study investigates the impact of these modifications on LLM safety, a critical consideration for building reliable and secure AI systems.
arXiv Detail & Related papers (2024-04-05T20:31:45Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
We propose a novel black-box jailbreak framework for automated red teaming of Large language models.
We designed malicious content concealing and memory reframing with an iterative optimization algorithm to jailbreak LLMs.
arXiv Detail & Related papers (2024-03-13T11:16:43Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.