論文の概要: Optimal Strong Regret and Violation in Constrained MDPs via Policy Optimization
- arxiv url: http://arxiv.org/abs/2410.02275v1
- Date: Thu, 3 Oct 2024 07:54:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 04:12:15.190763
- Title: Optimal Strong Regret and Violation in Constrained MDPs via Policy Optimization
- Title(参考訳): 政策最適化による拘束型MDPの最適ストロングレグレットと振動
- Authors: Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, Nicola Gatti,
- Abstract要約: Emphconstrained MDPs(CMDPs)におけるオンライン学習の研究
提案アルゴリズムは, 対向型MDPに対して, 最先端のポリシー最適化アプローチを採用するプリミティブ・デュアル・スキームを実装している。
- 参考スコア(独自算出の注目度): 37.24692425018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study online learning in \emph{constrained MDPs} (CMDPs), focusing on the goal of attaining sublinear strong regret and strong cumulative constraint violation. Differently from their standard (weak) counterparts, these metrics do not allow negative terms to compensate positive ones, raising considerable additional challenges. Efroni et al. (2020) were the first to propose an algorithm with sublinear strong regret and strong violation, by exploiting linear programming. Thus, their algorithm is highly inefficient, leaving as an open problem achieving sublinear bounds by means of policy optimization methods, which are much more efficient in practice. Very recently, Muller et al. (2024) have partially addressed this problem by proposing a policy optimization method that allows to attain $\widetilde{\mathcal{O}}(T^{0.93})$ strong regret/violation. This still leaves open the question of whether optimal bounds are achievable by using an approach of this kind. We answer such a question affirmatively, by providing an efficient policy optimization algorithm with $\widetilde{\mathcal{O}}(\sqrt{T})$ strong regret/violation. Our algorithm implements a primal-dual scheme that employs a state-of-the-art policy optimization approach for adversarial (unconstrained) MDPs as primal algorithm, and a UCB-like update for dual variables.
- Abstract(参考訳): 我々は, オンライン学習を, サブリニアの強い後悔と強い累積的制約違反の達成を目標として, CMDP(emph{constrained MDPs})で研究する。
標準(弱)の指標とは違って、これらの指標は負の項が正の項を補うことを許さず、かなりの追加の課題を生じさせる。
Efroni et al (2020) は線形プログラミングを活用することで、線形の強い後悔と強い違反を伴うアルゴリズムを最初に提案した。
したがって、それらのアルゴリズムは極めて非効率であり、政策最適化法により線形境界を達成する開放的な問題として残り、実際よりもはるかに効率的である。
つい最近、Muller et al (2024) はこの問題を部分的に解決し、$\widetilde{\mathcal{O}}(T^{0.93})$ strong regret/violation を達成するためのポリシー最適化法を提案している。
このことは、このタイプのアプローチを用いることで最適な境界が達成可能であるかどうかという疑問を、いまだに残している。
そのような疑問に対して、$\widetilde{\mathcal{O}}(\sqrt{T})$ strong regret/violation を用いた効率的なポリシー最適化アルゴリズムを提供することで、肯定的に答える。
提案アルゴリズムは, 対向的(制約のない) MDP に対して, 対向的(制約のない) MDP に対して, 両変数に対する UCB 様更新に対して, 最先端のポリシー最適化アプローチを採用するプリミラル・デュアル・スキームを実装した。
関連論文リスト
- Best-of-Both-Worlds Policy Optimization for CMDPs with Bandit Feedback [34.7178680288326]
Stradi et al.(2024) は、マルコフ決定過程に制約のある最初のベスト・オブ・ボス・ワールドズ・アルゴリズムを提案した。
本稿では,CMDPにおける帯域幅フィードバックを用いたベスト・オブ・ワールドズ・アルゴリズムを提案する。
本アルゴリズムは政策最適化手法に基づいており, 占有率に基づく手法よりも効率的である。
論文 参考訳(メタデータ) (2024-10-03T07:44:40Z) - Narrowing the Gap between Adversarial and Stochastic MDPs via Policy Optimization [11.11876897168701]
本稿では,次数$tildemathcalO(mathrmpoly(H)sqrtSAT)$の残差を求めるアルゴリズムを提案する。
提案したアルゴリズムと分析は、占有対策によって与えられる典型的なツールを完全に回避する。
論文 参考訳(メタデータ) (2024-07-08T08:06:45Z) - Truly No-Regret Learning in Constrained MDPs [61.78619476991494]
未知のCMDPで学習するモデルベース原始双対アルゴリズムを提案する。
提案アルゴリズムは,誤差のキャンセルを伴わずにサブ線形後悔を実現する。
論文 参考訳(メタデータ) (2024-02-24T09:47:46Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
無限水平割引マルコフ決定過程(拘束型MDP)の最適ポリシの計算問題について検討する。
我々は, 最適制約付きポリシーに反復的に対応し, 非漸近収束性を持つ2つの単一スケールポリシーに基づく原始双対アルゴリズムを開発した。
我々の知る限り、この研究は制約付きMDPにおける単一時間スケールアルゴリズムの非漸近的な最後の収束結果となる。
論文 参考訳(メタデータ) (2023-06-20T17:27:31Z) - Low-Switching Policy Gradient with Exploration via Online Sensitivity
Sampling [23.989009116398208]
一般非線形関数近似を用いた低スイッチングサンプリング効率ポリシ最適化アルゴリズム LPO を設計する。
提案アルゴリズムは,$widetildeO(fractextpoly(d)varepsilon3)$サンプルのみを用いて,$varepsilon$-optimal Policyを得る。
論文 参考訳(メタデータ) (2023-06-15T23:51:46Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
我々は,損失関数が約1,300ドル以上のエピソードに対して任意に変化するような,敵対的決定過程(MDP)の学習を検討する。
本稿では,同じ設定で$tildemathcal O(K2/3)$に対する後悔を改善する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T14:37:21Z) - Optimistic Policy Optimization is Provably Efficient in Non-stationary
MDPs [45.6318149525364]
非定常線形カーネルマルコフ決定過程(MDP)におけるエピソード強化学習(RL)の研究
本稿では,$underlinetextp$eriodically $underlinetextr$estarted $underlinetexto$ptimistic $underlinetextp$olicy $underlinetexto$ptimization algorithm (PROPO)を提案する。
論文 参考訳(メタデータ) (2021-10-18T02:33:20Z) - A Policy Efficient Reduction Approach to Convex Constrained Deep
Reinforcement Learning [2.811714058940267]
本稿では,最小基準点法(MNP)を一般化した条件勾配型アルゴリズムを提案する。
提案手法は,メモリコストを桁違いに削減し,その性能と効率を両立させる。
論文 参考訳(メタデータ) (2021-08-29T20:51:32Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
本稿では,最適化アルゴリズム(OPPO)の最適変種を提案する。
OPPO は $tildeO(sqrtd2 H3 T )$ regret を達成する。
我々の知る限りでは、OPPOは、探索する最初の証明可能な効率的なポリシー最適化アルゴリズムである。
論文 参考訳(メタデータ) (2019-12-12T08:40:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。