論文の概要: Best-of-Both-Worlds Policy Optimization for CMDPs with Bandit Feedback
- arxiv url: http://arxiv.org/abs/2410.02269v1
- Date: Thu, 3 Oct 2024 07:44:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 07:36:05.191932
- Title: Best-of-Both-Worlds Policy Optimization for CMDPs with Bandit Feedback
- Title(参考訳): 帯域フィードバックを持つCMDPのBest-of-Both-Worlds Policy Optimization
- Authors: Francesco Emanuele Stradi, Anna Lunghi, Matteo Castiglioni, Alberto Marchesi, Nicola Gatti,
- Abstract要約: Stradi et al.(2024) は、マルコフ決定過程に制約のある最初のベスト・オブ・ボス・ワールドズ・アルゴリズムを提案した。
本稿では,CMDPにおける帯域幅フィードバックを用いたベスト・オブ・ワールドズ・アルゴリズムを提案する。
本アルゴリズムは政策最適化手法に基づいており, 占有率に基づく手法よりも効率的である。
- 参考スコア(独自算出の注目度): 34.7178680288326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study online learning in constrained Markov decision processes (CMDPs) in which rewards and constraints may be either stochastic or adversarial. In such settings, Stradi et al.(2024) proposed the first best-of-both-worlds algorithm able to seamlessly handle stochastic and adversarial constraints, achieving optimal regret and constraint violation bounds in both cases. This algorithm suffers from two major drawbacks. First, it only works under full feedback, which severely limits its applicability in practice. Moreover, it relies on optimizing over the space of occupancy measures, which requires solving convex optimization problems, an highly inefficient task. In this paper, we provide the first best-of-both-worlds algorithm for CMDPs with bandit feedback. Specifically, when the constraints are stochastic, the algorithm achieves $\widetilde{\mathcal{O}}(\sqrt{T})$ regret and constraint violation, while, when they are adversarial, it attains $\widetilde{\mathcal{O}}(\sqrt{T})$ constraint violation and a tight fraction of the optimal reward. Moreover, our algorithm is based on a policy optimization approach, which is much more efficient than occupancy-measure-based methods.
- Abstract(参考訳): 制約付きマルコフ決定過程 (CMDP) におけるオンライン学習について検討し, 報酬と制約は確率的か逆かのいずれかであることを示した。
そのような設定において、Stradi et al (2024) は、両ケースにおいて最適な後悔と制約違反境界を達成し、確率的および対角的制約をシームレスに処理できる最初のベスト・オブ・ボス・ワールド・アルゴリズムを提案した。
このアルゴリズムには2つの大きな欠点がある。
ひとつは、完全なフィードバックの下でのみ動作するため、実際には適用性を大幅に制限する。
さらに、コンベックス最適化問題を解くことを必要とする占領対策の空間を最適化すること、非常に非効率なタスクに依存している。
本稿では,CMDPにおける帯域幅フィードバックを用いたベスト・オブ・ワールドズ・アルゴリズムを提案する。
具体的には、制約が確率的であれば、アルゴリズムは$\widetilde{\mathcal{O}}(\sqrt{T})$後悔と制約違反を達成し、一方、逆ならば$\widetilde{\mathcal{O}}(\sqrt{T})$制約違反を達成し、最適報酬の密分を達成できる。
さらに,本アルゴリズムは,占有率に基づく手法よりもはるかに効率的なポリシ最適化手法に基づいている。
関連論文リスト
- Optimal Strong Regret and Violation in Constrained MDPs via Policy Optimization [37.24692425018]
Emphconstrained MDPs(CMDPs)におけるオンライン学習の研究
提案アルゴリズムは, 対向型MDPに対して, 最先端のポリシー最適化アプローチを採用するプリミティブ・デュアル・スキームを実装している。
論文 参考訳(メタデータ) (2024-10-03T07:54:04Z) - Beyond Primal-Dual Methods in Bandits with Stochastic and Adversarial Constraints [29.514323697659613]
我々は,学習者が任意の長期制約を満たすことなく報酬を最大化することを目的とした,knapsacks問題によるバンディットの一般化に対処する。
私たちのゴールは、双方の制約の下で機能するベスト・オブ・ザ・ワールドのアルゴリズムを設計することです。
論文 参考訳(メタデータ) (2024-05-25T08:09:36Z) - Second Order Methods for Bandit Optimization and Control [34.51425758864638]
我々は,大規模な凸関数に対して,このアルゴリズムが最適($kappa$-2020と呼ぶ凸関数の観点で)となることを示す。
また,メモリを用いたオンライン凸最適化への2次帯域幅アルゴリズムの適用について検討した。
論文 参考訳(メタデータ) (2024-02-14T04:03:38Z) - Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained
Optimization [13.170519806372075]
2組の制約を持つ凸最適化の問題は、半定値プログラミングの文脈で頻繁に発生する。
最初の制約セットへのプロジェクションは困難であるため、プロジェクションフリーなアルゴリズムを探索する必要がある。
提案アルゴリズムの有効性は, スパース行列推定, 半定緩和によるクラスタリング, および一様スペースカット問題の適用性について検証した。
論文 参考訳(メタデータ) (2021-07-14T08:01:30Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
対戦相手が展開するスムーズなアルゴリズムに対して,Min-playerの新しいアルゴリズムを提案する。
本アルゴリズムは,制限周期のない単調進行を保証し,適切な勾配上昇数を求める。
論文 参考訳(メタデータ) (2021-06-02T22:03:36Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Conservative Stochastic Optimization with Expectation Constraints [11.393603788068777]
本稿では,データ指標や環境変数に関して,目的関数と制約関数が期待する凸最適化問題を考察する。
このような問題を解決するためのオンラインおよび効率的なアプローチは、広く研究されていない。
本稿では、制約違反をゼロとし、$Oleft(T-frac12right)$Optimity gapを実現する新しい保守的最適化アルゴリズム(CSOA)を提案する。
論文 参考訳(メタデータ) (2020-08-13T08:56:24Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
双レベル最適化は、2レベル構造を示す問題のクラスである。
このような二段階問題に対処するための2段階近似(TTSA)アルゴリズムを提案する。
本稿では,TTSAフレームワークの特殊な事例として,2段階の自然なアクター・クリティカルポリシー最適化アルゴリズムが有用であることを示す。
論文 参考訳(メタデータ) (2020-07-10T05:20:02Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。