A Novel Method for Accurate & Real-time Food Classification: The Synergistic Integration of EfficientNetB7, CBAM, Transfer Learning, and Data Augmentation
- URL: http://arxiv.org/abs/2410.02304v1
- Date: Thu, 3 Oct 2024 08:39:06 GMT
- Title: A Novel Method for Accurate & Real-time Food Classification: The Synergistic Integration of EfficientNetB7, CBAM, Transfer Learning, and Data Augmentation
- Authors: Shayan Rokhva, Babak Teimourpour,
- Abstract summary: This study employs the state-of-the-art EfficientNetB7 architecture, enhanced through transfer learning, data augmentation, and the CBAM attention module.
The proposed methodology, bolstered by various deep learning techniques, consistently achieves an impressive average accuracy of 96.40%.
Notably, it can classify over 60 images within one second during inference on unseen data, demonstrating its ability to deliver high accuracy promptly.
- Score: 1.864621482724548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating artificial intelligence into modern society is profoundly transformative, significantly enhancing productivity by streamlining various daily tasks. AI-driven recognition systems provide notable advantages in the food sector, including improved nutrient tracking, tackling food waste, and boosting food production and consumption efficiency. Accurate food classification is a crucial initial step in utilizing advanced AI models, as the effectiveness of this process directly influences the success of subsequent operations; therefore, achieving high accuracy at a reasonable speed is essential. Despite existing research efforts, a gap persists in improving performance while ensuring rapid processing times, prompting researchers to pursue cost-effective and precise models. This study addresses this gap by employing the state-of-the-art EfficientNetB7 architecture, enhanced through transfer learning, data augmentation, and the CBAM attention module. This methodology results in a robust model that surpasses previous studies in accuracy while maintaining rapid processing suitable for real-world applications. The Food11 dataset from Kaggle was utilized, comprising 16643 imbalanced images across 11 diverse classes with significant intra-category diversities and inter-category similarities. Furthermore, the proposed methodology, bolstered by various deep learning techniques, consistently achieves an impressive average accuracy of 96.40%. Notably, it can classify over 60 images within one second during inference on unseen data, demonstrating its ability to deliver high accuracy promptly. This underscores its potential for practical applications in accurate food classification and enhancing efficiency in subsequent processes.
Related papers
- iFuzzyTL: Interpretable Fuzzy Transfer Learning for SSVEP BCI System [24.898026682692688]
This study explores advanced classification techniques leveraging interpretable fuzzy transfer learning (iFuzzyTL)
iFuzzyTL refines input signal processing and classification in a human-interpretable format by integrating fuzzy inference systems and attention mechanisms.
The model's efficacy is demonstrated across three datasets.
arXiv Detail & Related papers (2024-10-16T06:07:23Z) - Efficient Human Pose Estimation: Leveraging Advanced Techniques with MediaPipe [5.439359582541082]
This study presents significant enhancements in human pose estimation using the MediaPipe framework.
The research focuses on improving accuracy, computational efficiency, and real-time processing capabilities.
The advancements have wide-ranging applications in augmented reality, sports analytics, and healthcare.
arXiv Detail & Related papers (2024-06-21T21:00:45Z) - Computer Vision in the Food Industry: Accurate, Real-time, and Automatic Food Recognition with Pretrained MobileNetV2 [1.6590638305972631]
This study employs the pretrained MobileNetV2 model, which is efficient and fast, for food recognition on the public Food11 dataset, comprising 16643 images.
It also utilizes various techniques such as dataset understanding, transfer learning, data augmentation, regularization, dynamic learning rate, hyper parameter tuning, and consideration of images in different sizes to enhance performance and robustness.
Despite employing a light model with a simpler structure and fewer trainable parameters compared to some deep and dense models in the deep learning area, it achieved commendable accuracy in a short time.
arXiv Detail & Related papers (2024-05-19T17:20:20Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - Accelerating Neural Network Training: A Brief Review [0.5825410941577593]
This study examines innovative approaches to expedite the training process of deep neural networks (DNN)
The research utilizes sophisticated methodologies, including Gradient Accumulation (GA), Automatic Mixed Precision (AMP), and Pin Memory (PM)
arXiv Detail & Related papers (2023-12-15T18:43:45Z) - Rethinking Cooking State Recognition with Vision Transformers [0.0]
Self-attention mechanism of Vision Transformer (ViT) architecture is proposed for the Cooking State Recognition task.
The proposed approach encapsulates the globally salient features from images, while also exploiting the weights learned from a larger dataset.
Our framework has an accuracy of 94.3%, which significantly outperforms the state-of-the-art.
arXiv Detail & Related papers (2022-12-16T17:06:28Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning
Using Shared Data on the Server [64.94942635929284]
Federated Learning (FL) suffers from two critical challenges, i.e., limited computational resources and low training efficiency.
We propose a novel FL framework, FedDUAP, to exploit the insensitive data on the server and the decentralized data in edge devices.
By integrating the two original techniques together, our proposed FL model, FedDUAP, significantly outperforms baseline approaches in terms of accuracy (up to 4.8% higher), efficiency (up to 2.8 times faster), and computational cost (up to 61.9% smaller)
arXiv Detail & Related papers (2022-04-25T10:00:00Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuses old knowledge into the new model.
We show that applying WEAVER in a sequential manner results in similar word embedding distributions as doing a combined training on all data at once.
arXiv Detail & Related papers (2022-02-21T10:34:41Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
We propose a novel unsupervised domain adaptation framework which can simultaneously transfer multi-modality knowledge, i.e., both kinematic and visual data, from simulator to real robot.
It remedies the domain gap with enhanced transferable features by using temporal cues in videos, and inherent correlations in multi-modal towards recognizing gesture.
Results show that our approach recovers the performance with great improvement gains, up to 12.91% in ACC and 20.16% in F1score without using any annotations in real robot.
arXiv Detail & Related papers (2021-03-06T09:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.