論文の概要: Self-eXplainable AI for Medical Image Analysis: A Survey and New Outlooks
- arxiv url: http://arxiv.org/abs/2410.02331v2
- Date: Fri, 15 Nov 2024 11:35:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:01.791728
- Title: Self-eXplainable AI for Medical Image Analysis: A Survey and New Outlooks
- Title(参考訳): 医療画像分析のための自己説明型AI:調査と新たな展望
- Authors: Junlin Hou, Sicen Liu, Yequan Bie, Hongmei Wang, Andong Tan, Luyang Luo, Hao Chen,
- Abstract要約: Self-eXplainable AI (S-XAI)は、ディープラーニングモデルのトレーニングプロセスに説明可能性を直接組み込む。
本研究は,様々な画像モダリティと臨床応用を包括的に検討する。
- 参考スコア(独自算出の注目度): 9.93411316886105
- License:
- Abstract: The increasing demand for transparent and reliable models, particularly in high-stakes decision-making areas such as medical image analysis, has led to the emergence of eXplainable Artificial Intelligence (XAI). Post-hoc XAI techniques, which aim to explain black-box models after training, have raised concerns about their fidelity to model predictions. In contrast, Self-eXplainable AI (S-XAI) offers a compelling alternative by incorporating explainability directly into the training process of deep learning models. This approach allows models to generate inherent explanations that are closely aligned with their internal decision-making processes, enhancing transparency and supporting the trustworthiness, robustness, and accountability of AI systems in real-world medical applications. To facilitate the development of S-XAI methods for medical image analysis, this survey presents a comprehensive review across various image modalities and clinical applications. It covers more than 200 papers from three key perspectives: 1) input explainability through the integration of explainable feature engineering and knowledge graph, 2) model explainability via attention-based learning, concept-based learning, and prototype-based learning, and 3) output explainability by providing textual and counterfactual explanations. This paper also outlines desired characteristics of explainability and evaluation methods for assessing explanation quality, while discussing major challenges and future research directions in developing S-XAI for medical image analysis.
- Abstract(参考訳): 透明で信頼性の高いモデルの需要の増加、特に医療画像分析などの高い意思決定領域において、eXplainable Artificial Intelligence(XAI)の出現につながっている。
トレーニング後のブラックボックスモデルを説明することを目的としたポストホックXAI技術は、モデル予測に対する彼らの忠実さを懸念している。
対照的に、Self-eXplainable AI(S-XAI)は、ディープラーニングモデルのトレーニングプロセスに直接説明可能性を導入することで、魅力的な代替手段を提供する。
このアプローチにより、モデルが内部の意思決定プロセスと密接に一致した固有の説明を生成し、透明性を高め、現実の医療アプリケーションにおけるAIシステムの信頼性、堅牢性、説明責任をサポートすることができる。
医用画像解析のためのS-XAI法の開発を容易にするため,様々な画像モダリティと臨床応用を網羅的に検討した。
3つの重要な視点から200以上の論文をカバーしている。
1)説明可能な特徴工学と知識グラフの統合による説明可能性の入力
2)注意に基づく学習、概念に基づく学習、プロトタイプベースの学習によるモデル説明可能性
3) テキスト及び対実的説明を提供することによる説明可能性の出力。
また、医用画像解析用S-XAIの開発における主要な課題と今後の研究方向性を論じながら、説明可能性と評価方法の望ましい特徴を概説する。
関連論文リスト
- Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Interpretable Medical Imagery Diagnosis with Self-Attentive
Transformers: A Review of Explainable AI for Health Care [2.7195102129095003]
ビジョントランスフォーマー(ViT)は、自己注意モジュールの恩恵を受け、最先端のコンピュータビジョンモデルとして登場した。
ディープラーニングモデルは複雑で、しばしば"ブラックボックス"として扱われる。
本稿では、最近のViTの進歩と、ViTの意思決定プロセスを理解するための解釈的アプローチを要約する。
論文 参考訳(メタデータ) (2023-09-01T05:01:52Z) - Deciphering knee osteoarthritis diagnostic features with explainable
artificial intelligence: A systematic review [4.918419052486409]
変形性膝関節症(OA)を診断するための既存の人工知能モデルは、その透明性と解釈可能性の欠如に対して批判を浴びている。
近年,説明可能な人工知能 (XAI) がモデルの予測に自信を与える特別な技術として出現している。
本報告では膝OA診断に用いるXAI技術について紹介する。
論文 参考訳(メタデータ) (2023-08-18T08:23:47Z) - XAI Renaissance: Redefining Interpretability in Medical Diagnostic
Models [0.0]
XAIルネッサンスは、医療診断モデルの解釈可能性を再定義することを目的としている。
XAI技術は、医療専門家にこれらのモデルを正確で信頼性の高い診断に理解し、信頼し、効果的に活用することを可能にする。
論文 参考訳(メタデータ) (2023-06-02T16:42:20Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAIは、AIアプリケーションを構築するための技術と方法を指す。
モデル説明可能性と解釈可能性は、医療実践におけるAIモデルのデプロイを成功させる上で不可欠である。
論文 参考訳(メタデータ) (2023-04-04T05:41:57Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Explainable Deep Learning Methods in Medical Image Classification: A
Survey [0.0]
最先端のディープラーニングモデルは、異なるタイプの医療データの分類において、人間レベルの精度を達成した。
これらのモデルは、主に解釈可能性の欠如のために、臨床ではほとんど採用されていない。
ディープラーニングモデルのブラックボックス性は、これらのモデルの意思決定プロセスを説明するための戦略を考案する必要性を高めている。
論文 参考訳(メタデータ) (2022-05-10T09:28:14Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。