Dynamic Gradient Alignment for Online Data Mixing
- URL: http://arxiv.org/abs/2410.02498v1
- Date: Thu, 3 Oct 2024 14:00:44 GMT
- Title: Dynamic Gradient Alignment for Online Data Mixing
- Authors: Simin Fan, David Grangier, Pierre Ablin,
- Abstract summary: The composition of training data mixtures is critical for effectively training large language models (LLMs)
Traditional approaches to this problem include ad-hoc reweighting methods, importance sampling, and gradient alignment techniques.
This paper focuses on gradient alignment and introduces Dynamic Gradient Alignment (DGA), a scalable online gradient alignment algorithm.
- Score: 23.774035761200746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The composition of training data mixtures is critical for effectively training large language models (LLMs), as it directly impacts their performance on downstream tasks. Our goal is to identify an optimal data mixture to specialize an LLM for a specific task with access to only a few examples. Traditional approaches to this problem include ad-hoc reweighting methods, importance sampling, and gradient alignment techniques. This paper focuses on gradient alignment and introduces Dynamic Gradient Alignment (DGA), a scalable online gradient alignment algorithm. DGA dynamically estimates the pre-training data mixture on which the models' gradients align as well as possible with those of the model on the specific task. DGA is the first gradient alignment approach that incurs minimal overhead compared to standard pre-training and outputs a competitive model, eliminating the need for retraining the model. Experimentally, we demonstrate significant improvements over importance sampling in two key scenarios: (i) when the pre-training set is small and importance sampling overfits due to limited data; and (ii) when there is insufficient specialized data, trapping importance sampling on narrow pockets of data. Our findings underscore the effectiveness of gradient alignment methods in optimizing training data mixtures, particularly in data-constrained environments, and offer a practical solution for enhancing LLM performance on specific tasks with limited data availability.
Related papers
- LPLgrad: Optimizing Active Learning Through Gradient Norm Sample Selection and Auxiliary Model Training [2.762397703396293]
Loss Prediction Loss with Gradient Norm (LPLgrad) is designed to quantify model uncertainty effectively and improve the accuracy of image classification tasks.
LPLgrad operates in two distinct phases: (i) em Training Phase aims to predict the loss for input features by jointly training a main model and an auxiliary model.
This dual-model approach enhances the ability to extract complex input features and learn intrinsic patterns from the data effectively.
arXiv Detail & Related papers (2024-11-20T18:12:59Z) - Beware of Calibration Data for Pruning Large Language Models [41.1689082093302]
Post-training pruning is a promising method that does not require resource-intensive iterative training.
We show that the effects of calibration data even value more than designing advanced pruning strategies.
Our preliminary exploration also discloses that using calibration data similar to the training data can yield better performance.
arXiv Detail & Related papers (2024-10-23T09:36:21Z) - Dataset Distillation by Automatic Training Trajectories [13.502303920701163]
We propose a new approach, Automatic Training Trajectories (ATT), which dynamically and adaptively adjusts trajectory length NS to address the Accumulated Mismatching Problem (AMP)
Our method outperforms existing methods particularly in tests involving cross-architectures.
arXiv Detail & Related papers (2024-07-19T12:27:11Z) - Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance [55.872926690722714]
We study the predictability of model performance regarding the mixture proportions in function forms.
We propose nested use of the scaling laws of training steps, model sizes, and our data mixing law.
Our method effectively optimize the training mixture of a 1B model trained for 100B tokens in RedPajama.
arXiv Detail & Related papers (2024-03-25T17:14:00Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
We propose auxiliary tasks that exploit the alignment between the original and corrected sentences.
We formulate each task as a sequence-to-sequence problem and perform multi-task training.
We find that the order of datasets used for training and even individual instances within a dataset may have important effects on the final performance.
arXiv Detail & Related papers (2023-11-20T14:50:12Z) - Building Manufacturing Deep Learning Models with Minimal and Imbalanced
Training Data Using Domain Adaptation and Data Augmentation [15.333573151694576]
We propose a novel domain adaptation (DA) approach to address the problem of labeled training data scarcity for a target learning task.
Our approach works for scenarios where the source dataset and the dataset available for the target learning task have same or different feature spaces.
We evaluate our combined approach using image data for wafer defect prediction.
arXiv Detail & Related papers (2023-05-31T21:45:34Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.