論文の概要: A Schema-aware Logic Reformulation for Graph Reachability
- arxiv url: http://arxiv.org/abs/2410.02533v1
- Date: Thu, 3 Oct 2024 14:39:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:41:38.658889
- Title: A Schema-aware Logic Reformulation for Graph Reachability
- Title(参考訳): グラフの到達可能性に対するスキーマ対応論理変換法
- Authors: Davide Di Pierro, Stefano Ferilli,
- Abstract要約: 本稿では,インスタンスの高レベルな概念化を活用することで,グラフパスを自動的に排除・ソートする戦略を提案する。
目的は、時間、空間要求、バックトラック数の観点から従来のアルゴリズムを改善することができるグラフ到達可能性シナリオの新しい一階述語論理の再構成を得ることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph reachability is the task of understanding whether two distinct points in a graph are interconnected by arcs to which in general a semantic is attached. Reachability has plenty of applications, ranging from motion planning to routing. Improving reachability requires structural knowledge of relations so as to avoid the complexity of traditional depth-first and breadth-first strategies, implemented in logic languages. In some contexts, graphs are enriched with their schema definitions establishing domain and range for every arc. The introduction of a schema-aware formalization for guiding the search may result in a sensitive improvement by cutting out unuseful paths and prioritising those that, in principle, reach the target earlier. In this work, we propose a strategy to automatically exclude and sort certain graph paths by exploiting the higher-level conceptualization of instances. The aim is to obtain a new first-order logic reformulation of the graph reachability scenario, capable of improving the traditional algorithms in terms of time, space requirements, and number of backtracks. The experiments exhibit the expected advantages of the approach in reducing the number of backtracks during the search strategy, resulting in saving time and space as well.
- Abstract(参考訳): グラフ到達性(Graph reachability)とは、グラフ内の2つの異なる点が、一般に意味論が付随する弧によって相互接続されているかどうかを理解するタスクである。
到達可能性には、モーションプランニングからルーティングまで、多くのアプリケーションがあります。
リーチビリティの向上には、論理言語で実装された従来の深さ優先戦略と幅優先戦略の複雑さを避けるために、関係の構造的な知識が必要である。
いくつかの文脈では、グラフはスキーマ定義を豊かにし、すべての弧に対して領域と範囲を確立する。
探索を導くためのスキーマ対応の形式化の導入は、未使用のパスを切断し、原則として、より早くターゲットに到達することを優先することで、センシティブな改善をもたらす可能性がある。
本研究では,インスタンスの高レベルな概念化を活用することで,グラフパスを自動的に排除・ソートする戦略を提案する。
目的は、時間、空間要求、バックトラック数の観点から従来のアルゴリズムを改善することができるグラフ到達可能性シナリオの新しい一階述語論理の再構成を得ることである。
実験では,探索戦略中のバックトラック数を減らし,時間と空間を節約できるというアプローチの利点が期待されている。
関連論文リスト
- Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - CoRe-GD: A Hierarchical Framework for Scalable Graph Visualization with
GNNs [20.706469085872516]
我々は、ストレスの最適化を学習できるサブクワッドラティックを備えたスケーラブルなグラフニューラルネットワーク(GNN)ベースのグラフ描画フレームワークを導入する。
古典的応力最適化手法と強制指向レイアウトアルゴリズムに着想を得て,入力グラフの粗い階層を生成する。
ネットワーク内の情報伝達を強化するために,新しい位置変換手法を提案する。
論文 参考訳(メタデータ) (2024-02-09T10:50:45Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
複合ノードメッセージパッシングネットワーク(CoNo-Link)は、超長いフレーム情報を関連付けるためのフレームワークである。
オブジェクトをノードとして扱う従来の方法に加えて、このネットワークは情報インタラクションのためのノードとしてオブジェクトトラジェクトリを革新的に扱う。
我々のモデルは、合成ノードを追加することで、より長い時間スケールでより良い予測を学習することができる。
論文 参考訳(メタデータ) (2023-12-14T14:00:30Z) - Learning High-level Semantic-Relational Concepts for SLAM [10.528810470934781]
低レベル因子グラフから推定できる高レベル意味関連概念を学習するためのアルゴリズムを提案する。
提案手法をシミュレーションと実データの両方で検証し, 2つのベースラインアプローチによる性能向上を実証した。
論文 参考訳(メタデータ) (2023-09-30T14:54:31Z) - Graph Value Iteration [35.87805182676444]
ディープ強化学習(Dep Reinforcement Learning, RL)は、2人のプレイヤーによるゲームや科学的な発見など、様々な検索領域で成功している。
最大の難点は、学習フレームワークが解決計画を見つけない限り、報酬信号がゼロであることである。
本稿では,グラフ探索をグラフ値繰り返しで拡張し,ハードプランニングインスタンスを解くドメイン非依存の手法を提案する。
論文 参考訳(メタデータ) (2022-09-20T10:45:03Z) - Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search [33.9052190473029]
サブグラフマッチングは、グラフデータベース検索、バイオメディカル分析、ソーシャルグループ検索などにおける中核的な操作である。
本稿では,クエリと対象グラフのマッチング情報を動的に計算する,新しいエンコーダ・デコーダニューラルネットワークアーキテクチャを提案する。
5つの大きな実世界のターゲットグラフの実験により、N-BLSはサブグラフマッチング性能を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2022-07-21T04:47:21Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
グラフニューラルネットワークは多くのグラフレベルのタスクの主要なアーキテクチャとして登場した。
グラフプーリングは、グラフ全体の全体的グラフレベル表現を得るためには不可欠である。
論文 参考訳(メタデータ) (2022-04-15T04:02:06Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
グラフマッチングアルゴリズムは、クエリグラフの埋め込みをデータグラフGに列挙する。
マッチング順序は、これらのバックトラックに基づくサブグラフマッチングアルゴリズムの時間効率において重要な役割を果たす。
本稿では,Reinforcement Learning (RL) と Graph Neural Networks (GNN) 技術を適用して,グラフマッチングアルゴリズムの高品質なマッチング順序を生成する。
論文 参考訳(メタデータ) (2022-01-25T00:10:03Z) - Temporal graph-based approach for behavioural entity classification [0.0]
本研究では,サイバーセキュリティ領域におけるグラフ構造の可能性を利用するための2段階的アプローチを提案する。
主なアイデアは、ネットワーク分類問題をグラフベースの振る舞い問題に変換することです。
正常実体と攻撃実体の両方の進化を表すことができるこれらのグラフ構造を抽出します。
3つのクラスタリング手法が通常のエンティティに適用され、類似の動作を集約し、不均衡問題を緩和し、ノイズデータを削減する。
論文 参考訳(メタデータ) (2021-05-11T06:13:58Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
未来に予測し、計画する能力は、世界で行動するエージェントにとって基本である。
視覚的予測と計画のための現在の学習手法は、長期的タスクでは失敗する。
本稿では,これらの制約を克服可能な視覚的予測と計画のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-23T17:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。