論文の概要: NestedMorph: Enhancing Deformable Medical Image Registration with Nested Attention Mechanisms
- arxiv url: http://arxiv.org/abs/2410.02550v2
- Date: Mon, 7 Oct 2024 21:25:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:31:52.774135
- Title: NestedMorph: Enhancing Deformable Medical Image Registration with Nested Attention Mechanisms
- Title(参考訳): NestedMorph:Nested Attention Mechanismによる変形可能な医用画像登録の強化
- Authors: Gurucharan Marthi Krishna Kumar, Janine Mendola, Amir Shmuel,
- Abstract要約: 変形可能な画像登録は、異なるモダリティにまたがる非線形な方法で医療画像の整列に不可欠である。
本稿では,Nested Attention Fusion を用いた新たなネットワークであるNestedMorphについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deformable image registration is crucial for aligning medical images in a non-linear fashion across different modalities, allowing for precise spatial correspondence between varying anatomical structures. This paper presents NestedMorph, a novel network utilizing a Nested Attention Fusion approach to improve intra-subject deformable registration between T1-weighted (T1w) MRI and diffusion MRI (dMRI) data. NestedMorph integrates high-resolution spatial details from an encoder with semantic information from a decoder using a multi-scale framework, enhancing both local and global feature extraction. Our model notably outperforms existing methods, including CNN-based approaches like VoxelMorph, MIDIR, and CycleMorph, as well as Transformer-based models such as TransMorph and ViT-V-Net, and traditional techniques like NiftyReg and SyN. Evaluations on the HCP dataset demonstrate that NestedMorph achieves superior performance across key metrics, including SSIM, HD95, and SDlogJ, with the highest SSIM of 0.89, and the lowest HD95 of 2.5 and SDlogJ of 0.22. These results highlight NestedMorph's ability to capture both local and global image features effectively, leading to superior registration performance. The promising outcomes of this study underscore NestedMorph's potential to significantly advance deformable medical image registration, providing a robust framework for future research and clinical applications. The source code and our implementation are available at: https://bit.ly/3zdVqcg
- Abstract(参考訳): 変形可能な画像登録は、異なるモダリティをまたいだ非直線的な医療画像の整列に不可欠であり、異なる解剖学的構造間の正確な空間対応を可能にする。
本稿では,Nested Attention Fusion を用いた新しいネットワークであるNestedMorphについて述べる。
NestedMorphは、エンコーダからの高解像度空間の詳細と、マルチスケールフレームワークを使用したデコーダからのセマンティック情報を統合し、局所的特徴抽出とグローバル的特徴抽出の両方を強化している。
我々のモデルは,VoxelMorphやMIDIR,CycleMorphといったCNNベースのアプローチ,TransMorphやViT-V-NetといったTransformerベースのモデル,NiftyRegやSyNといった従来のテクニックなど,既存の手法よりも優れています。
HCPデータセットの評価によると、NestedMorphはSSIM、HD95、SDlogJなど主要なメトリクスで優れたパフォーマンスを達成しており、SSIMは0.89、HD95は2.5、SDlogJは0.22である。
これらの結果は、NestedMorphがローカル画像とグローバル画像の両方を効果的にキャプチャできる能力を強調し、登録性能が向上した。
この研究の有望な成果は、変形可能な医用画像の登録を大幅に進歩させるNestedMorphの可能性を強調し、将来の研究および臨床応用のための堅牢な枠組みを提供する。
ソースコードと実装は以下の通りである。
関連論文リスト
- LDM-Morph: Latent diffusion model guided deformable image registration [2.8195553455247317]
医用画像登録のための非教師あり変形可能な登録アルゴリズム LDM-Morph を提案する。
潜在拡散モデル(LDM)から抽出したLDM-Morph統合機能を用いて意味情報を強化する。
4つのパブリックな2次元心臓画像データセットに対する大規模な実験により、提案されたLDM-Morphフレームワークは、既存の最先端CNNとTransformersベースの登録方法よりも優れていた。
論文 参考訳(メタデータ) (2024-11-23T03:04:36Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - MambaMorph: a Mamba-based Framework for Medical MR-CT Deformable
Registration [14.984797417719326]
我々は,新しい多モード変形可能な登録フレームワークであるMambaMorphを紹介する。
MambaMorphは、Mambaベースの登録モジュールと、きめ細かい、しかし単純な機能抽出器を使用している。
MambaMorphは,登録精度の観点から,現在最先端の学習ベース登録法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-01-25T04:16:45Z) - GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration [62.41725951450803]
学習に基づく変形可能な登録は、フィールドの登録精度と滑らかさをトレードオフする重み付けされた目的関数に依存する。
我々は,GSMorphと呼ばれる勾配手術機構に基づく登録モデルを構築し,複数の損失に対してパラメータフリーな高バランスを実現する。
提案手法はモデルに依存しないため,パラメータの追加や推論の遅延を伴わずに,任意のディープ登録ネットワークにマージすることができる。
論文 参考訳(メタデータ) (2023-06-26T13:32:09Z) - Recurrence With Correlation Network for Medical Image Registration [66.63200823918429]
本稿では,医療画像登録ネットワークであるRecurrence with correlation Network (RWCNet)について述べる。
これらの特徴により、2つの画像登録データセットにおける医用画像登録精度が向上することが実証された。
論文 参考訳(メタデータ) (2023-02-05T02:41:46Z) - Anatomy-aware and acquisition-agnostic joint registration with SynthMorph [6.017634371712142]
アフィン画像登録は、医用画像解析の基盤となっている。
ディープラーニング(DL)メソッドは、画像対を出力変換にマッピングする関数を学ぶ。
ほとんどのアフィン法は、ユーザが調整したい解剖学に依存しない。つまり、アルゴリズムが画像のすべての構造を考慮すれば、登録は不正確なものになる。
われわれはこれらの欠点をSynthMorphで解決する。これは高速で対称で、微分型で使い易いDLツールで、任意の脳画像の関節アフィン変形性登録を行う。
論文 参考訳(メタデータ) (2023-01-26T18:59:33Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
我々は、MedSegDiff-V2と呼ばれるトランスフォーマーベースの拡散フレームワークを提案する。
画像の異なる20種類の画像分割作業において,その有効性を検証する。
論文 参考訳(メタデータ) (2023-01-19T03:42:36Z) - 3D Inception-Based TransMorph: Pre- and Post-operative Multi-contrast
MRI Registration in Brain Tumors [1.2234742322758418]
InceptionモデルとTransMorphモデルに基づく2段階カスケードネットワークを提案する。
ロス関数は、標準画像類似度測定器、拡散正則化器、および強度依存を克服するために付加されたエッジマップ類似度測定器から構成された。
BraTS-Regチャレンジの最終テストフェーズでは,モデル提出時に6位を獲得しました。
論文 参考訳(メタデータ) (2022-12-08T22:00:07Z) - ACSGRegNet: A Deep Learning-based Framework for Unsupervised Joint
Affine and Diffeomorphic Registration of Lumbar Spine CT via Cross- and
Self-Attention Fusion [4.068962439293273]
本研究では,医用画像登録のためのエンドツーエンドの深層学習フレームワークを提案する。
ACSGRegNetは、画像間特徴対応を確立するクロスアテンションモジュールと、画像内解剖学的構造を認識する自己アテンションモジュールを統合する。
我々の手法は平均Dice 0.963 と平均距離誤差 0.321mm を達成し,SOTA (State-of-the-art) よりも優れている。
論文 参考訳(メタデータ) (2022-08-04T13:13:48Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。