論文の概要: ColaCare: Enhancing Electronic Health Record Modeling through Large Language Model-Driven Multi-Agent Collaboration
- arxiv url: http://arxiv.org/abs/2410.02551v1
- Date: Thu, 3 Oct 2024 14:55:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:31:52.771196
- Title: ColaCare: Enhancing Electronic Health Record Modeling through Large Language Model-Driven Multi-Agent Collaboration
- Title(参考訳): ColaCare: 大規模言語モデル駆動マルチエージェントコラボレーションによる電子健康記録モデリングの強化
- Authors: Zixiang Wang, Yinghao Zhu, Huiya Zhao, Xiaochen Zheng, Tianlong Wang, Wen Tang, Yasha Wang, Chengwei Pan, Ewen M. Harrison, Junyi Gao, Liantao Ma,
- Abstract要約: ColaCareは、大規模言語モデル(LLM)によって駆動されるマルチエージェントコラボレーションを通じて電子健康記録(EHR)モデリングを強化するフレームワークである。
我々のアプローチは、構造化されたEHRデータとテキストベースの推論の間のギャップを埋めるために、ドメイン固有のエキスパートモデルとLLMをシームレスに統合する。
- 参考スコア(独自算出の注目度): 14.562007498512754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce ColaCare, a framework that enhances Electronic Health Record (EHR) modeling through multi-agent collaboration driven by Large Language Models (LLMs). Our approach seamlessly integrates domain-specific expert models with LLMs to bridge the gap between structured EHR data and text-based reasoning. Inspired by clinical consultations, ColaCare employs two types of agents: DoctorAgent and MetaAgent, which collaboratively analyze patient data. Expert models process and generate predictions from numerical EHR data, while LLM agents produce reasoning references and decision-making reports within the collaborative consultation framework. We additionally incorporate the Merck Manual of Diagnosis and Therapy (MSD) medical guideline within a retrieval-augmented generation (RAG) module for authoritative evidence support. Extensive experiments conducted on four distinct EHR datasets demonstrate ColaCare's superior performance in mortality prediction tasks, underscoring its potential to revolutionize clinical decision support systems and advance personalized precision medicine. The code, complete prompt templates, more case studies, etc. are publicly available at the anonymous link: https://colacare.netlify.app.
- Abstract(参考訳): 大規模言語モデル(LLM)によって駆動されるマルチエージェントコラボレーションを通じて電子健康記録(EHR)モデリングを強化するフレームワークであるColaCareを紹介する。
我々のアプローチは、構造化されたEHRデータとテキストベースの推論の間のギャップを埋めるために、ドメイン固有のエキスパートモデルとLLMをシームレスに統合する。
臨床相談にインスパイアされたColaCareは、2種類のエージェント(DoctorAgentとMetaAgent)を雇用している。
専門家モデルでは、数値EHRデータから予測を処理し、LLMエージェントは、協調的なコンサルテーションフレームワーク内で推論参照と意思決定レポートを生成する。
また,Merck Manual of Diagnosis and Therapy (MSD) の医療ガイドラインを検索強化世代 (RAG) モジュールに組み込んで,信頼できるエビデンス支援を行った。
4つの異なるEHRデータセットで実施された大規模な実験は、ColaCareの死亡予測タスクにおける優れたパフォーマンスを示し、臨床決定支援システムを革新し、パーソナライズされた精密医療を前進させる可能性を示している。
コード、完全なプロンプトテンプレート、さらなるケーススタディなどは匿名のリンクで公開されている。
関連論文リスト
- IIMedGPT: Promoting Large Language Model Capabilities of Medical Tasks by Efficient Human Preference Alignment [6.022433954095106]
実際の医療課題から派生した6つの医療指導を含む医療指導データセットCMedINSを紹介した。
次に、効率的な選好アライメント手法を用いて、医用モデルIIMedGPTをローンチする。
その結果,本研究の最終モデルは医療対話における既存の医療モデルよりも優れていた。
論文 参考訳(メタデータ) (2025-01-06T09:22:36Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
本稿では,大規模言語モデルと特定の診断規則との整合性を考慮したルールアラインフレームワークを提案する。
患者と医師間の規則に基づくコミュニケーションを含む医療対話データセットを開発した。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-22T17:44:40Z) - EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGEは、マルチモーダルEHR予測モデリングの強化を目的とした、検索拡張生成駆動フレームワークである。
提案手法は,大規模言語モデルにより時系列データと臨床メモの両方からエンティティを抽出する。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - Multimodal Fusion of EHR in Structures and Semantics: Integrating Clinical Records and Notes with Hypergraph and LLM [39.25272553560425]
本稿では,EHRにおける構造と意味を効果的に統合するMINGLEという新しいフレームワークを提案する。
本フレームワークでは,医療概念のセマンティクスと臨床ノートのセマンティクスをハイパーグラフニューラルネットワークに組み合わせるために,2段階の注入戦略を採用している。
2つのEHRデータセット(パブリックMIMIC-IIIとプライベートCRADLE)の実験結果から、MINGLEは予測性能を11.83%向上できることが示された。
論文 参考訳(メタデータ) (2024-02-19T23:48:40Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
既存のモデルは、しばしば臨床上の課題に医学的文脈を欠いているため、外部知識の組み入れが促される。
本稿では、マルチモーダルEHR表現を強化するためのRAG(Retrieval-Augmented Generation)駆動フレームワークREALMを提案する。
MIMIC-III 死亡率と可読化タスクに関する実験は,ベースラインよりもREALM フレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-10T18:27:28Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
NECHOは,階層的正規化を伴う新しい医用コード中心のマルチモーダル・コントラスト学習フレームワークである。
まず, 医用コード, 人口統計, 臨床ノートを含む多面的情報をネットワーク設計を用いて統合する。
また,EHRデータの階層構造を学習するために,医療オントロジーにおける親レベル情報を用いてモダリティ固有のエンコーダを正規化する。
論文 参考訳(メタデータ) (2024-01-22T01:58:32Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
本稿では,コンピテンスベースのマルチモーダルカリキュラム学習フレームワーク(CMCL)を提案する。
具体的には、CMCLは放射線学者の学習過程をシミュレートし、段階的にモデルを最適化する。
パブリックIU-XrayとMIMIC-CXRデータセットの実験は、CMCLを既存のモデルに組み込んでパフォーマンスを向上させることができることを示している。
論文 参考訳(メタデータ) (2022-06-24T08:16:01Z) - "My nose is running.""Are you also coughing?": Building A Medical
Diagnosis Agent with Interpretable Inquiry Logics [80.55587329326046]
本稿では,DSMDの対話マネージャを実装するための,より解釈可能な意思決定プロセスを提案する。
推論を行うために、非常に透明なコンポーネントを持つモデルを考案する。
実験の結果,診断精度は7.7%,10.0%,3.0%向上した。
論文 参考訳(メタデータ) (2022-04-29T09:02:23Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。