論文の概要: Convolutional Variational Autoencoders for Spectrogram Compression in Automatic Speech Recognition
- arxiv url: http://arxiv.org/abs/2410.02560v2
- Date: Fri, 4 Oct 2024 13:25:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:31:52.757213
- Title: Convolutional Variational Autoencoders for Spectrogram Compression in Automatic Speech Recognition
- Title(参考訳): 自動音声認識におけるスペクトル圧縮のための畳み込み変分オートエンコーダ
- Authors: Olga Iakovenko, Ivan Bondarenko,
- Abstract要約: 本稿では、畳み込み変分オートエンコーダ(VAE)に基づく圧縮スペクトログラム表現の代替手法を提案する。
畳み込みVAEモデルは、13次元の埋め込みから短いオーディオスペクトログラム(25ms)の断片を再構成するために、LibriSpeechデータセットのサブサンプルで訓練された。
トレーニングされた40次元(300ms)の埋め込みモデルは、GoogleSpeechCommandsデータセットで音声コマンドのコーパスを生成するために使用された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For many Automatic Speech Recognition (ASR) tasks audio features as spectrograms show better results than Mel-frequency Cepstral Coefficients (MFCC), but in practice they are hard to use due to a complex dimensionality of a feature space. The following paper presents an alternative approach towards generating compressed spectrogram representation, based on Convolutional Variational Autoencoders (VAE). A Convolutional VAE model was trained on a subsample of the LibriSpeech dataset to reconstruct short fragments of audio spectrograms (25 ms) from a 13-dimensional embedding. The trained model for a 40-dimensional (300 ms) embedding was used to generate features for corpus of spoken commands on the GoogleSpeechCommands dataset. Using the generated features an ASR system was built and compared to the model with MFCC features.
- Abstract(参考訳): 多くの自動音声認識(ASR)では、スペクトルがメル周波数ケプストラル係数(MFCC)よりも良い結果を示すが、実際には特徴空間の複素次元性のために使用が困難である。
下記の論文では、畳み込み変分オートエンコーダ(VAE)に基づく圧縮スペクトログラム表現の代替手法を提案する。
畳み込みVAEモデルは、13次元の埋め込みから短いオーディオスペクトログラム(25ms)の断片を再構成するために、LibriSpeechデータセットのサブサンプルで訓練された。
トレーニングされた40次元(300ms)の埋め込みモデルは、GoogleSpeechCommandsデータセットで音声コマンドのコーパスを生成するために使用された。
生成された特徴を用いて、ASRシステムを構築し、MFCCの機能を持つモデルと比較した。
関連論文リスト
- VQ-CTAP: Cross-Modal Fine-Grained Sequence Representation Learning for Speech Processing [81.32613443072441]
テキスト音声(TTS)、音声変換(VC)、自動音声認識(ASR)などのタスクでは、クロスモーダルな粒度(フレームレベル)シーケンス表現が望まれる。
本稿では,テキストと音声を共同空間に組み込むために,クロスモーダルシーケンストランスコーダを用いた量子コントラスト・トーケン・音響事前学習(VQ-CTAP)手法を提案する。
論文 参考訳(メタデータ) (2024-08-11T12:24:23Z) - Codec-ASR: Training Performant Automatic Speech Recognition Systems with Discrete Speech Representations [16.577870835480585]
本稿では、離散符号を用いたASRシステム構築に関する総合的な分析を行う。
本稿では,量子化スキームや時間領域,スペクトル特徴符号化などの異なる手法について検討する。
同様のビットレートでEncodecを上回るパイプラインを導入する。
論文 参考訳(メタデータ) (2024-07-03T20:51:41Z) - MLCA-AVSR: Multi-Layer Cross Attention Fusion based Audio-Visual Speech Recognition [62.89464258519723]
異なるレベルのオーディオ/視覚エンコーダに融合することで、各モードの表現を促進する多層クロスアテンション融合に基づくAVSR手法を提案する。
提案手法は第1位システムを超え,新たなSOTA cpCERの29.13%をこのデータセット上に構築する。
論文 参考訳(メタデータ) (2024-01-07T08:59:32Z) - TokenSplit: Using Discrete Speech Representations for Direct, Refined,
and Transcript-Conditioned Speech Separation and Recognition [51.565319173790314]
TokenSplit は Transformer アーキテクチャを使用するシーケンス・ツー・シーケンス・エンコーダ・デコーダモデルである。
また,本モデルでは,書き起こし条件付けの有無にかかわらず,分離の点で優れた性能を発揮することを示す。
また、自動音声認識(ASR)の性能を測定し、音声合成の音声サンプルを提供し、我々のモデルの有用性を実証する。
論文 参考訳(メタデータ) (2023-08-21T01:52:01Z) - Multi-View Frequency-Attention Alternative to CNN Frontends for
Automatic Speech Recognition [12.980843126905203]
周波数に対するグローバルな関心は、局所的な畳み込みよりも有益であることを示す。
畳み込み型ニューラルネットワークトランスデューサに代えて,生産規模での単語誤り率を2.4%削減する。
論文 参考訳(メタデータ) (2023-06-12T08:37:36Z) - Continual Learning for On-Device Speech Recognition using Disentangled
Conformers [54.32320258055716]
本稿では,LibriVoxオーディオブックから派生した話者固有領域適応のための連続学習ベンチマークを提案する。
本稿では,DistangledCLと呼ばれる計算効率のよい連続学習アルゴリズムを提案する。
実験の結果, DisConformer モデルは一般的な ASR のベースラインよりも有意に優れていた。
論文 参考訳(メタデータ) (2022-12-02T18:58:51Z) - Timbre Transfer with Variational Auto Encoding and Cycle-Consistent
Adversarial Networks [0.6445605125467573]
本研究は,音源音の音色を目標音の音色に変換し,音質の低下を最小限に抑えた深層学習の音色伝達への適用について検討する。
この手法は、変分オートエンコーダとジェネレーティブ・アドバイサル・ネットワークを組み合わせて、音源の有意義な表現を構築し、ターゲット音声の現実的な世代を生成する。
論文 参考訳(メタデータ) (2021-09-05T15:06:53Z) - End-to-end Audio-visual Speech Recognition with Conformers [65.30276363777514]
ResNet-18とConvolution-augmented Transformer(Conformer)に基づくハイブリッドCTC/Attentionモデルを提案する。
特に、オーディオおよびビジュアルエンコーダは、生のピクセルとオーディオ波形から直接特徴を抽出することを学びます。
提案手法は, 音声のみ, 視覚のみ, および視聴覚実験において, 最先端の性能を高めることを実証する。
論文 参考訳(メタデータ) (2021-02-12T18:00:08Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
本稿では,非並列音声変換手法である非並列音声変換法(seq2seq)を提案する。
本手法では,ボトルネック特徴抽出器(BNE)とセック2セック合成モジュールを組み合わせる。
主観的および主観的評価は,提案手法が自然性と話者類似性の両方において優れた音声変換性能を有することを示す。
論文 参考訳(メタデータ) (2020-09-06T13:01:06Z) - Multiresolution and Multimodal Speech Recognition with Transformers [22.995102995029576]
本稿ではトランスフォーマーアーキテクチャを用いた音声視覚自動音声認識(AV-ASR)システムを提案する。
我々は、視覚情報によって提供されるシーンコンテキストに着目して、ASRを接地する。
私たちの結果は、最先端のListen、Attend、Spellベースのアーキテクチャに匹敵します。
論文 参考訳(メタデータ) (2020-04-29T09:32:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。