論文の概要: Ethio-Fake: Cutting-Edge Approaches to Combat Fake News in Under-Resourced Languages Using Explainable AI
- arxiv url: http://arxiv.org/abs/2410.02609v1
- Date: Thu, 3 Oct 2024 15:49:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:12:23.808649
- Title: Ethio-Fake: Cutting-Edge Approaches to Combat Fake News in Under-Resourced Languages Using Explainable AI
- Title(参考訳): Ethio-Fake: 説明可能なAIを用いたオープンソース下言語におけるフェイクニュースの圧縮アプローチ
- Authors: Mesay Gemeda Yigezu, Melkamu Abay Mersha, Girma Yohannis Bade, Jugal Kalita, Olga Kolesnikova, Alexander Gelbukh,
- Abstract要約: 誤報はコンテンツの作成や拡散が容易なため、急速に広まることがある。
従来のフェイクニュース検出のアプローチは、コンテンツベースの機能にのみ依存することが多い。
本稿では,ソーシャルコンテキストに基づく機能とニュースコンテンツ機能を統合した包括的アプローチを提案する。
- 参考スコア(独自算出の注目度): 44.21078435758592
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The proliferation of fake news has emerged as a significant threat to the integrity of information dissemination, particularly on social media platforms. Misinformation can spread quickly due to the ease of creating and disseminating content, affecting public opinion and sociopolitical events. Identifying false information is therefore essential to reducing its negative consequences and maintaining the reliability of online news sources. Traditional approaches to fake news detection often rely solely on content-based features, overlooking the crucial role of social context in shaping the perception and propagation of news articles. In this paper, we propose a comprehensive approach that integrates social context-based features with news content features to enhance the accuracy of fake news detection in under-resourced languages. We perform several experiments utilizing a variety of methodologies, including traditional machine learning, neural networks, ensemble learning, and transfer learning. Assessment of the outcomes of the experiments shows that the ensemble learning approach has the highest accuracy, achieving a 0.99 F1 score. Additionally, when compared with monolingual models, the fine-tuned model with the target language outperformed others, achieving a 0.94 F1 score. We analyze the functioning of the models, considering the important features that contribute to model performance, using explainable AI techniques.
- Abstract(参考訳): フェイクニュースの拡散は、特にソーシャルメディアプラットフォームにおける情報拡散の完全性に対する重大な脅威として浮上している。
誤報は、コンテンツの作成と普及の容易さから急速に広まり、世論や社会政治の出来事に影響を及ぼす。
したがって、偽情報の特定は、そのネガティブな影響を減らし、オンラインニュースソースの信頼性を維持するために不可欠である。
伝統的に偽ニュース検出のアプローチは、しばしばコンテンツに基づく特徴のみに依存し、ニュース記事の認識と伝播を形作る上での社会的文脈の重要な役割を見落としている。
本稿では,ソーシャル・コンテクストに基づく機能とニュースコンテンツ機能を統合した包括的アプローチを提案し,アンダー・ソース言語における偽ニュース検出の精度を高める。
従来の機械学習,ニューラルネットワーク,アンサンブル学習,トランスファー学習など,さまざまな手法を用いた実験を行っている。
実験の結果を評価すると, アンサンブル学習法が最も精度が高く, 0.99 F1 のスコアが得られた。
さらに、単言語モデルと比較すると、ターゲット言語による微調整モデルは他のモデルよりも優れ、0.94 F1スコアを達成した。
我々は、説明可能なAI技術を用いて、モデルの性能に寄与する重要な特徴を考慮し、モデルの機能を解析する。
関連論文リスト
- Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - fakenewsbr: A Fake News Detection Platform for Brazilian Portuguese [0.6775616141339018]
本稿ではブラジルポルトガル語における偽ニュースの検出に関する総合的研究について述べる。
本稿では、TF-IDFやWord2Vecといった自然言語処理技術を活用する機械学習ベースのアプローチを提案する。
ユーザフレンドリーなWebプラットフォームである fakenewsbr.com を開発し,ニュース記事の妥当性の検証を容易にする。
論文 参考訳(メタデータ) (2023-09-20T04:10:03Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
誤情報識別の領域における構成的学習を探求する自己学習モデルを構築した。
本モデルでは、トレーニングデータが不十分な場合、非マッチング画像-テキストペア検出の優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-19T02:53:59Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Interpretable Fake News Detection with Topic and Deep Variational Models [2.15242029196761]
我々は,解釈可能な特徴と手法を用いた偽ニュース検出に焦点をあてる。
我々は,テキストニュースの高密度表現を統合した深層確率モデルを開発した。
我々のモデルは最先端の競合モデルに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2022-09-04T05:31:00Z) - Modelling Social Context for Fake News Detection: A Graph Neural Network
Based Approach [0.39146761527401425]
フェイクニュースの検出は、情報の信頼性を確保し、ニュースエコシステムの信頼性を維持するために不可欠である。
本稿では,ハイブリッドグラフニューラルネットワークによる偽ニュース検出の社会的文脈を解析した。
論文 参考訳(メタデータ) (2022-07-27T12:58:33Z) - Lifelong Learning Natural Language Processing Approach for Multilingual
Data Classification [1.3999481573773074]
複数の言語で偽ニュースを検知できる生涯学習型アプローチを提案する。
解析された言語間で得られた知識を一般化するモデルの能力も観察された。
論文 参考訳(メタデータ) (2022-05-25T10:34:04Z) - Transformer-based Language Model Fine-tuning Methods for COVID-19 Fake
News Detection [7.29381091750894]
偽ニュース検出のためのトランスフォーマーに基づく言語モデルの微調整手法を提案する。
まず、個々のモデルのトークン語彙を専門用語の実際の意味論のために拡張する。
最後に、普遍言語モデルRoBERTaとドメイン固有モデルCT-BERTによって抽出された予測特徴を、複数の層認識によって融合させ、微細で高レベルな特定の表現を統合する。
論文 参考訳(メタデータ) (2021-01-14T09:05:42Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。