論文の概要: Examining Language Modeling Assumptions Using an Annotated Literary Dialect Corpus
- arxiv url: http://arxiv.org/abs/2410.02674v1
- Date: Thu, 3 Oct 2024 16:58:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 01:42:49.658873
- Title: Examining Language Modeling Assumptions Using an Annotated Literary Dialect Corpus
- Title(参考訳): 注釈付き辞書コーパスを用いた言語モデルの推定
- Authors: Craig Messner, Tom Lippincott,
- Abstract要約: 19世紀のアメリカの文学的変種トークンのデータセットを,人間の注釈付き方言群タグの新たな層で提示する。
意図的な正書法変化によって生じる「方言効果」が複数の言語チャネルを取り入れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a dataset of 19th century American literary orthovariant tokens with a novel layer of human-annotated dialect group tags designed to serve as the basis for computational experiments exploring literarily meaningful orthographic variation. We perform an initial broad set of experiments over this dataset using both token (BERT) and character (CANINE)-level contextual language models. We find indications that the "dialect effect" produced by intentional orthographic variation employs multiple linguistic channels, and that these channels are able to be surfaced to varied degrees given particular language modelling assumptions. Specifically, we find evidence showing that choice of tokenization scheme meaningfully impact the type of orthographic information a model is able to surface.
- Abstract(参考訳): そこで本稿では,19世紀のアメリカ文学の正統代用トークンのデータセットを,人間の注釈付き方言群タグの新たな層で表現し,文字的に意味のある正統な変分を探索する計算実験の基盤となるように設計した。
我々は,トークン(BERT)とキャラクタ(CANINE)レベルの文脈言語モデルを用いて,このデータセット上で実験を行う。
意図的な正書法変化によって生じる「方言効果」は複数の言語チャネルを取り入れており、これらのチャネルは特定の言語モデリング仮定に基づいて様々な程度に表面化可能であることを示す。
具体的には,トークン化方式の選択が,モデルが提示可能な正書法情報の種類に有意な影響を及ぼすことを示す証拠を見出した。
関連論文リスト
- On the Proper Treatment of Tokenization in Psycholinguistics [53.960910019072436]
論文は、トークンレベルの言語モデルは、精神言語学研究で使用される前に、文字レベルの言語モデルにマージ化されるべきであると主張している。
興味領域自体のサブプライムよりも心理学的予測が優れている様々な焦点領域を見いだす。
論文 参考訳(メタデータ) (2024-10-03T17:18:03Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - Modeling Orthographic Variation in Occitan's Dialects [3.038642416291856]
大規模多言語モデルは、前処理時のスペル正規化の必要性を最小限に抑える。
以上の結果から,複数言語モデルでは,前処理時のスペル正規化の必要性が最小限に抑えられていることが示唆された。
論文 参考訳(メタデータ) (2024-04-30T07:33:51Z) - We're Calling an Intervention: Exploring the Fundamental Hurdles in Adapting Language Models to Nonstandard Text [8.956635443376527]
非標準テキストへの言語モデル適応の根底にある課題を理解するための一連の実験を提示する。
我々は、言語モデルの既存バイアスとの相互作用と、いくつかの種類の言語的変動を近似する介入を設計する。
学習データのサイズや性質の異なる言語モデル適応時の介入を適用することで、知識伝達がいつ成功するかについて重要な洞察を得ることができる。
論文 参考訳(メタデータ) (2024-04-10T18:56:53Z) - Understanding Cross-Lingual Alignment -- A Survey [52.572071017877704]
言語間アライメントは多言語言語モデルにおける言語間の表現の有意義な類似性である。
本研究は,言語間アライメントの向上,手法の分類,分野全体からの洞察の要約といった手法の文献を調査する。
論文 参考訳(メタデータ) (2024-04-09T11:39:53Z) - Semantic Change Detection for the Romanian Language [0.5202524136984541]
実世界のデータセット上に静的および文脈的単語埋め込みモデルを作成するための様々な戦略を分析する。
まず,英語データセット (SEMEVAL-CCOHA) とルーマニア語データセット (SEMEVAL-CCOHA) で単語埋め込みモデルの評価を行った。
実験結果から,コーパスによっては,モデルの選択と,意味的変化を検出するためのスコアを計算するための距離が最も重要な要因であることが示唆された。
論文 参考訳(メタデータ) (2023-08-23T13:37:02Z) - Morphological Inflection with Phonological Features [7.245355976804435]
本研究は,形態素モデルがサブキャラクタの音韻的特徴にアクセスできる様々な方法で得られる性能への影響について検討する。
我々は、浅いグラフ-音素マッピングを持つ言語に対する言語固有の文法を用いて、標準グラフデータから音素データを抽出する。
論文 参考訳(メタデータ) (2023-06-21T21:34:39Z) - Do Not Fire the Linguist: Grammatical Profiles Help Language Models
Detect Semantic Change [6.7485485663645495]
まず,10個のデータセット上での多言語ニューラル言語モデル(XLM-R)の性能を比較し,その性能を7つの言語で比較した。
この結果から,XLM-Rによる文法プロファイルのアンサンブルにより,ほとんどのデータセットや言語における意味変化検出性能が向上することが示唆された。
論文 参考訳(メタデータ) (2022-04-12T11:20:42Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
我々は、標準発話とプログラムの訓練例を文法から言い換えて、ゼロショット学習を分析する。
改良された文法,より強力なパラフレーズ,効率的な学習手法を用いて,これらのギャップを埋めることを提案する。
我々のモデルはラベル付きデータゼロの2つの意味解析ベンチマーク(Scholar, Geo)で高い性能を達成する。
論文 参考訳(メタデータ) (2021-10-15T21:41:16Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。