SynthFormer: Equivariant Pharmacophore-based Generation of Molecules for Ligand-Based Drug Design
- URL: http://arxiv.org/abs/2410.02718v1
- Date: Thu, 3 Oct 2024 17:38:46 GMT
- Title: SynthFormer: Equivariant Pharmacophore-based Generation of Molecules for Ligand-Based Drug Design
- Authors: Zygimantas Jocys, Henriette M. G. Willems, Katayoun Farrahi,
- Abstract summary: This paper addresses the gap between in silico generative approaches and practical in vitro methodologies.
We introduce SynthFormer, a novel ML model that utilizes a 3D equivariant encoder for pharmacophores to generate fully synthesizable molecules.
Our contributions include a new methodology for efficient chemical space exploration using 3D information, a novel architecture called Synthformer for translating 3D pharmacophore representations into molecules, and a meaningful embedding space that organizes reagents for drug discovery optimization.
- Score: 1.3927943269211591
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Drug discovery is a complex and resource-intensive process, with significant time and cost investments required to bring new medicines to patients. Recent advancements in generative machine learning (ML) methods offer promising avenues to accelerate early-stage drug discovery by efficiently exploring chemical space. This paper addresses the gap between in silico generative approaches and practical in vitro methodologies, highlighting the need for their integration to optimize molecule discovery. We introduce SynthFormer, a novel ML model that utilizes a 3D equivariant encoder for pharmacophores to generate fully synthesizable molecules, constructed as synthetic trees. Unlike previous methods, SynthFormer incorporates 3D information and provides synthetic paths, enhancing its ability to produce molecules with good docking scores across various proteins. Our contributions include a new methodology for efficient chemical space exploration using 3D information, a novel architecture called Synthformer for translating 3D pharmacophore representations into molecules, and a meaningful embedding space that organizes reagents for drug discovery optimization. Synthformer generates molecules that dock well and enables effective late-stage optimization restricted by synthesis paths.
Related papers
- SDDBench: A Benchmark for Synthesizable Drug Design [31.739548311094843]
We propose a new, data-driven metric to evaluate molecule synthesizability.
Our approach directly assesses the feasibility of synthetic routes for a given molecule through our proposed round-trip score.
To demonstrate the efficacy of our method, we conduct a comprehensive evaluation of round-trip scores alongside search success rate across a range of representative molecule generative models.
arXiv Detail & Related papers (2024-11-13T03:08:33Z) - Generative Artificial Intelligence for Navigating Synthesizable Chemical Space [25.65907958071386]
We introduce SynFormer, a generative modeling framework designed to efficiently explore and navigate synthesizable chemical space.
By incorporating a scalable transformer architecture and a diffusion module for building block selection, SynFormer surpasses existing models in synthesizable molecular design.
arXiv Detail & Related papers (2024-10-04T15:09:05Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
De novo drug design based on the structure of a target protein can provide novel drug candidates.
We present a generative solution named TamGent that can directly generate candidate drugs from scratch for a given target.
arXiv Detail & Related papers (2022-08-30T09:32:39Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - RetroGNN: Approximating Retrosynthesis by Graph Neural Networks for De
Novo Drug Design [75.14290780116002]
We train deep graph neural networks to approximate the outputs of a retrosynthesis planning software.
Our approach finds molecules predicted to be more likely to be antibiotics while maintaining good drug-like properties and being easily synthesizable.
arXiv Detail & Related papers (2020-11-25T22:04:16Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
We propose a novel forward synthesis framework powered by reinforcement learning (RL) for de novo drug design.
In this setup, the agent learns to navigate through the immense synthetically accessible chemical space.
We describe how the end-to-end training in this study represents an important paradigm in radically expanding the synthesizable chemical space.
arXiv Detail & Related papers (2020-04-26T21:40:03Z) - The Synthesizability of Molecules Proposed by Generative Models [3.032184156362992]
Discovery of functional molecules is an expensive and time-consuming process.
One class of techniques of growing interest for early-stage drug discovery is de novo molecular generation and optimization.
These techniques can suggest novel molecular structures intended to maximize a multi-objective function.
However, the utility of these approaches is stymied by ignorance of synthesizability.
arXiv Detail & Related papers (2020-02-17T15:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.