論文の概要: Erasing Conceptual Knowledge from Language Models
- arxiv url: http://arxiv.org/abs/2410.02760v3
- Date: Mon, 21 Jul 2025 21:03:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 15:16:09.958086
- Title: Erasing Conceptual Knowledge from Language Models
- Title(参考訳): 言語モデルから概念知識を消去する
- Authors: Rohit Gandikota, Sheridan Feucht, Samuel Marks, David Bau,
- Abstract要約: 概念レベルのアンラーニングに対する原則的アプローチである言語記憶の消去(ELM)を導入する。
ELMは、モデル自身の内省的分類能力によって定義される分布を一致させることで機能する。
ELMのバイオセキュリティ、サイバーセキュリティ、および文学ドメイン消去タスクに対する効果を実証する。
- 参考スコア(独自算出の注目度): 24.63143961814566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce Erasure of Language Memory (ELM), a principled approach to concept-level unlearning that operates by matching distributions defined by the model's own introspective classification capabilities. Our key insight is that effective unlearning should leverage the model's ability to evaluate its own knowledge, using the language model itself as a classifier to identify and reduce the likelihood of generating content related to undesired concepts. ELM applies this framework to create targeted low-rank updates that reduce generation probabilities for concept-specific content while preserving the model's broader capabilities. We demonstrate ELM's efficacy on biosecurity, cybersecurity, and literary domain erasure tasks. Comparative evaluation reveals that ELM-modified models achieve near-random performance on assessments targeting erased concepts, while simultaneously preserving generation coherence, maintaining benchmark performance on unrelated tasks, and exhibiting strong robustness to adversarial attacks. Our code, data, and trained models are available at https://elm.baulab.info
- Abstract(参考訳): 本研究では,概念レベルのアンラーニングに対する原則的アプローチである言語記憶の消去(ELM)を導入する。
我々の重要な洞察は、効果的なアンラーニングは、言語モデル自体を分類器として使用して、望ましくない概念に関連するコンテンツを識別し、減らすことによって、モデルが自身の知識を評価する能力を活用すべきであるということです。
ELMはこのフレームワークを適用して、モデルの拡張能力を保ちながら、コンセプト固有のコンテンツの生成確率を減少させる、ターゲットとなる低ランクな更新を生成する。
ELMのバイオセキュリティ、サイバーセキュリティ、および文学ドメイン消去タスクに対する効果を実証する。
比較評価の結果,ELM修飾モデルでは,消去された概念を対象とする評価において,生成コヒーレンスを同時に保ち,無関係なタスクのベンチマーク性能を維持し,敵攻撃に対して強い強靭性を示す。
私たちのコード、データ、トレーニングされたモデルはhttps://elm.baulab.infoで利用可能です。
関連論文リスト
- Automated Capability Evaluation of Foundation Models [0.0]
Active Learning for Capability Evaluation (ACE)は、基盤モデルのスケーラブルで自動化された、きめ細かい評価のための新しいフレームワークである。
カバレッジと効率を最大化するために、ACEは被写体モデルの性能を潜在意味空間上の機能関数としてモデル化する。
この適応評価戦略は、静的ベンチマークが見逃す可能性のある強度、弱点、障害モードのコスト効率の良い発見を可能にする。
論文 参考訳(メタデータ) (2025-05-22T19:09:57Z) - UniErase: Unlearning Token as a Universal Erasure Primitive for Language Models [54.75551043657238]
学習可能なパラメトリック接尾辞(アンラーニングトークン)を用いて、ターゲットとなる忘れ行動に向けて言語モデルを操る新しいアンラーニングパラダイムであるUniEraseを紹介する。
UniEraseは、実世界の知識設定の下で、バッチ、シーケンシャル、そして正確なアンラーニングで、最先端のSOTA(State-of-the-art)パフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-05-21T15:53:28Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
大規模言語モデル(LLM)は、学術、産業、そして日々のアプリケーションに欠かせないものになっている。
大規模言語モデル (LLM) 時代における評価の課題の1つは一般化問題である。
従来の性能スコアを補完するメカニズムの解釈可能性向上指標であるモデル利用指数(MUI)を提案する。
論文 参考訳(メタデータ) (2025-04-10T04:09:47Z) - Erasing Without Remembering: Safeguarding Knowledge Forgetting in Large Language Models [70.78205685001168]
大規模言語モデル(LLM)におけるモデル非学習の保護方法について研究する。
私たちの目標は、未学習のモデルが対象とする知識の関連記憶をリコールすることを防止することです。
LLMアンラーニングの保護のための一般化能力を大幅に向上させる摂動に基づくPERMUを提案する。
論文 参考訳(メタデータ) (2025-02-27T11:03:33Z) - ReLearn: Unlearning via Learning for Large Language Models [64.2802606302194]
本研究では、効果的なアンラーニングのためのデータ拡張および微調整パイプラインであるReLearnを提案する。
このフレームワークでは、知識レベルの保存を測定するために、知識獲得率(KFR)と知識保持率(KRR)を導入している。
実験の結果,ReLearnは高品質な出力を保ちながら,目標とするリセットを実現することができた。
論文 参考訳(メタデータ) (2025-02-16T16:31:00Z) - Counterfactuals As a Means for Evaluating Faithfulness of Attribution Methods in Autoregressive Language Models [6.394084132117747]
本稿では,自己回帰型言語モデルに対する帰属手法の忠実度を評価するために,反事実生成を利用する手法を提案する。
提案手法は, 流動性, 分散性, 分散性, 分散性, 評価プロトコルの信頼性を向上する。
論文 参考訳(メタデータ) (2024-08-21T00:17:59Z) - DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
本稿では,大規模言語モデル (LLM) と視覚言語モデル (VLM) の先行情報を利用した画像モデルの故障検出手法であるDECIDERを提案する。
DECIDERは一貫して最先端の故障検出性能を達成し、マシューズ相関係数全体のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-08-01T07:08:11Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
安全でないユーザリクエストを認識して拒否する、大規模な言語モデル(LLM)の既存の評価は、3つの制限に直面している。
まず、既存の手法では、安全でないトピックの粗い粒度を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
第3に、既存の評価は大きなLCMに頼っているため、コストがかかる可能性がある。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - Estimating Knowledge in Large Language Models Without Generating a Single Token [12.913172023910203]
大規模言語モデル(LLM)における知識を評価するための現在の手法は、モデルをクエリし、生成した応答を評価する。
本研究では,モデルがテキストを生成する前に評価を行うことができるかどうかを問う。
様々なLLMを用いた実験では、内部の主題表現を訓練した単純なプローブであるKEENが、両方のタスクで成功することが示された。
論文 参考訳(メタデータ) (2024-06-18T14:45:50Z) - Split, Unlearn, Merge: Leveraging Data Attributes for More Effective Unlearning in LLMs [18.629717934007513]
SPUNGE(SPlit, UNlearn, MerGE)は,任意のアンラーニング手法を用いて有効性を増幅するフレームワークである。
我々はSPUNGEが最近の2つの非学習手法の性能を大幅に向上させることを実証的に実証した。
論文 参考訳(メタデータ) (2024-06-17T17:35:52Z) - Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces [34.00971641141313]
近年,大規模言語モデル(LLM)の「学習」概念が注目されている。
未学習の手法を評価するための現在のプロトコルは、関連する知識を監視せずに行動テストに依存している。
我々は、未学習概念のパラメトリックな知識トレースの変化を考慮して、未学習を内部的に評価するべきだと論じている。
論文 参考訳(メタデータ) (2024-06-17T15:00:35Z) - Can I understand what I create? Self-Knowledge Evaluation of Large Language Models [31.85129258347539]
大規模言語モデル(LLM)は言語タスクにおいて顕著な進歩を遂げた。
フェインマンの創造を通して理解する原理に触発され、自己知識評価フレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-10T09:53:54Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Instructed Language Models with Retrievers Are Powerful Entity Linkers [87.16283281290053]
Instructed Generative Entity Linker (INSGENEL)は、カジュアル言語モデルが知識ベース上でエンティティリンクを実行することを可能にする最初のアプローチである。
INSGENEL は、+6.8 F1 点が平均的に上昇する以前の生成的代替よりも優れていた。
論文 参考訳(メタデータ) (2023-11-06T16:38:51Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Towards Explainable Evaluation Metrics for Natural Language Generation [36.594817754285984]
重要な特性を特定し,機械翻訳評価指標の重要な目標を提案する。
我々は,従来のNLP手法が高品質なブラックボックス評価指標の限界を自動的に識別するのに不適であることを示す新しい実験を行った。
論文 参考訳(メタデータ) (2022-03-21T17:05:54Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
AdvGLUE(Adversarial GLUE)は、様々な種類の敵攻撃の下で、現代の大規模言語モデルの脆弱性を調査し評価するための新しいマルチタスクベンチマークである。
GLUEタスクに14の逆攻撃手法を適用してAdvGLUEを構築する。
テストしたすべての言語モデルとロバストなトレーニングメソッドは、AdvGLUEではパフォーマンスが悪く、スコアは明確な精度よりもはるかに遅れています。
論文 参考訳(メタデータ) (2021-11-04T12:59:55Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
本稿では,現実性評価指標を評価するメタ評価フレームワークGO FIGUREを紹介する。
10個の実測値のベンチマーク分析により、我々のフレームワークが堅牢で効率的な評価を提供することが明らかとなった。
また、QAメトリクスは、ドメイン間の事実性を測定する標準的なメトリクスよりも一般的に改善されているが、パフォーマンスは、質問を生成する方法に大きく依存していることも明らかにしている。
論文 参考訳(メタデータ) (2020-10-24T08:30:20Z) - Perception Score, A Learned Metric for Open-ended Text Generation
Evaluation [62.7690450616204]
本稿では,新しい,強力な学習ベース評価尺度を提案する。
本手法は,単語の重なり合いなどの評価基準にのみ焦点をあてるのではなく,生成の全体的な品質を測定し,一律に得点する。
論文 参考訳(メタデータ) (2020-08-07T10:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。