論文の概要: Complex-valued convolutional neural network classification of hand gesture from radar images
- arxiv url: http://arxiv.org/abs/2410.02771v1
- Date: Tue, 17 Sep 2024 11:49:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:54:19.849116
- Title: Complex-valued convolutional neural network classification of hand gesture from radar images
- Title(参考訳): レーダ画像からの手の動きの複雑な畳み込みニューラルネットワーク分類
- Authors: Shokooh Khandan,
- Abstract要約: 本稿では,すべてのビルディングブロック,前方および後方操作,および複雑な領域における導関数を含む完全なCV-CNNを提案する。
本稿では,2組のCVハンドジェスチャーレーダ画像の分類モデルについて,等価なRVモデルと比較検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hand gesture recognition systems have yielded many exciting advancements in the last decade and become more popular in HCI (human-computer interaction) with several application areas, which spans from safety and security applications to automotive field. Various deep neural network architectures have already been inspected for hand gesture recognition systems, including multi-layer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN) and a cascade of the last two architectures known as CNN-RNN. However, a major problem still exists, which is most of the existing ML algorithms are designed and developed the building blocks and techniques for real-valued (RV). Researchers applied various RV techniques on the complex-valued (CV) radar images, such as converting a CV optimisation problem into a RV one, by splitting the complex numbers into their real and imaginary parts. However, the major disadvantage of this method is that the resulting algorithm will double the network dimensions. Recent work on RNNs and other fundamental theoretical analysis suggest that CV numbers have a richer representational capacity, but due to the absence of the building blocks required to design such models, the performance of CV networks are marginalised. In this report, we propose a fully CV-CNN, including all building blocks, forward and backward operations, and derivatives all in complex domain. We explore our proposed classification model on two sets of CV hand gesture radar images in comparison with the equivalent RV model. In chapter five, we propose a CV-forward residual network, for the purpose of binary classification of the two sets of CV hand gesture radar datasets and compare its performance with our proposed CV-CNN and a baseline CV-forward CNN.
- Abstract(参考訳): ハンドジェスチャー認識システムは、過去10年間に多くのエキサイティングな進歩をもたらし、安全とセキュリティのアプリケーションから自動車分野まで、いくつかのアプリケーション分野とHCI(ヒューマンコンピュータインタラクション)で人気を博している。
マルチレイヤパーセプトロン(MLP)、畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、CNN-RNNとして知られる最後の2つのアーキテクチャのカスケードなど、さまざまなディープニューラルネットワークアーキテクチャが手動認識システムのためにすでに検査されている。
しかし、既存のMLアルゴリズムのほとんどは、実数値(RV)のためのビルディングブロックとテクニックを設計・開発している。
研究者らは、複素数値(CV)レーダー画像に対して、複素数を実数と虚数に分割することで、CV最適化問題をRV画像に変換するなど、様々なRV技術を適用した。
しかし、この手法の大きな欠点は、結果のアルゴリズムがネットワーク次元を2倍にすることである。
近年の RNN およびその他の基本的な理論解析により,CV の数値は表現能力に富むことが示唆されているが,そのようなモデルの設計に必要なビルディングブロックが欠如しているため,CV ネットワークの性能は損なわれている。
本稿では,すべてのビルディングブロック,前方操作,後方操作,および複雑な領域におけるデリバティブを含む,完全なCV-CNNを提案する。
本稿では,2組のCVハンドジェスチャーレーダ画像の分類モデルについて,等価なRVモデルと比較検討する。
第5章では,2組のCVハンドジェスチャーレーダデータセットのバイナリ分類を目的としたCVフォワード残差ネットワークを提案し,その性能を,提案したCV-CNNとベースラインCV-フォワードCNNと比較した。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - ClusVPR: Efficient Visual Place Recognition with Clustering-based
Weighted Transformer [13.0858576267115]
ClusVPRは重複する領域における冗長な情報の特定の問題と、小さなオブジェクトの表現に対処する新しいアプローチである。
ClusVPRはClustering-based weighted Transformer Network (CWTNet)と呼ばれるユニークなパラダイムを導入した
また,パラメータ数を大幅に削減し,モデル効率を向上させる最適化VLAD層を導入する。
論文 参考訳(メタデータ) (2023-10-06T09:01:15Z) - ViGU: Vision GNN U-Net for Fast MRI [1.523157765626545]
Vision GNN U-Net (ViGU) と呼ばれる高速MRIのための新しいビジョンGNN型ネットワークを提案する。
対称エンコーダとデコーダパスのグラフブロックを用いてU字型ネットワークを開発する。
数値的および視覚的な実験を通して、提案したViGUとGANの変種が既存のCNNおよびGANベースの手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-01-23T12:51:57Z) - An Analysis of Complex-Valued CNNs for RF Data-Driven Wireless Device
Classification [12.810432378755904]
最近のディープニューラルネットワークに基づくデバイス分類研究は、複素数値ニューラルネットワーク(CVNN)が実数値ニューラルネットワーク(RVNN)よりも高い分類精度が得られることを示している。
本研究は、実際のLoRaおよびWiFi RFデータセットを用いて、この傾向についてより深く理解する。
論文 参考訳(メタデータ) (2022-02-20T10:35:20Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Latent Code-Based Fusion: A Volterra Neural Network Approach [21.25021807184103]
最近導入されたVolterra Neural Networks(VNN)を用いた深層構造エンコーダを提案する。
提案手法は,cnnベースのオートエンコーダに対して,より頑健な分類性能を持つサンプル複雑性を示す。
論文 参考訳(メタデータ) (2021-04-10T18:29:01Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - RAMP-CNN: A Novel Neural Network for Enhanced Automotive Radar Object
Recognition [10.006245521984697]
本稿では,オブジェクトの位置とクラスを抽出するマルチパースペクティブ・畳み込みニューラルネットワーク(RAMP-CNN)を提案する。
4次元畳み込みニューラルネットワーク(NN)の複雑さを回避するため、RAMP-CNNモデルにいくつかの低次元NNモデルを組み合わせることを提案する。
提案したRAMP-CNNモデルは、すべてのテストシナリオにおける以前の作業よりも平均リコールと平均精度が向上する。
論文 参考訳(メタデータ) (2020-11-13T19:12:12Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
グラフ表現学習は、大規模に高品質な候補探索をサポートすることに多くの注目を集めている。
ユーザ・イテム相互作用ネットワークにおけるオブジェクトの埋め込みベクトルの学習の有効性にもかかわらず、連続的な埋め込み空間におけるユーザの好みを推測する計算コストは膨大である。
連続的かつ離散的なコードとを協調的に学習するための,単純かつ効果的な離散表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-04T06:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。