論文の概要: OATH: Efficient and Flexible Zero-Knowledge Proofs of End-to-End ML Fairness
- arxiv url: http://arxiv.org/abs/2410.02777v1
- Date: Tue, 17 Sep 2024 16:00:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:54:19.831249
- Title: OATH: Efficient and Flexible Zero-Knowledge Proofs of End-to-End ML Fairness
- Title(参考訳): OATH: エンドツーエンドMLフェアネスの効率的かつ柔軟なゼロ知識証明
- Authors: Olive Franzese, Ali Shahin Shamsabadi, Hamed Haddadi,
- Abstract要約: Zero-Knowledge Proofs of Fairnessは、サービスプロバイダが彼らのモデルが多様な人口動態を公平に提供できることを検証することによって、フェアネスの非準拠に対処する。
OATHはクライアント対面通信とオフライン監査フェーズを効果的にデプロイできるフレームワークである。
OATHは、ニューラルネットワークZKPoFの以前の作業よりも、ランタイムを1343倍改善し、はるかに大きなモデルにスケールアップする。
- 参考スコア(独自算出の注目度): 13.986886689256128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Though there is much interest in fair AI systems, the problem of fairness noncompliance -- which concerns whether fair models are used in practice -- has received lesser attention. Zero-Knowledge Proofs of Fairness (ZKPoF) address fairness noncompliance by allowing a service provider to verify to external parties that their model serves diverse demographics equitably, with guaranteed confidentiality over proprietary model parameters and data. They have great potential for building public trust and effective AI regulation, but no previous techniques for ZKPoF are fit for real-world deployment. We present OATH, the first ZKPoF framework that is (i) deployably efficient with client-facing communication comparable to in-the-clear ML as a Service query answering, and an offline audit phase that verifies an asymptotically constant quantity of answered queries, (ii) deployably flexible with modularity for any score-based classifier given a zero-knowledge proof of correct inference, (iii) deployably secure with an end-to-end security model that guarantees confidentiality and fairness across training, inference, and audits. We show that OATH obtains strong robustness against malicious adversaries at concretely efficient parameter settings. Notably, OATH provides a 1343x improvement to runtime over previous work for neural network ZKPoF, and scales up to much larger models -- even DNNs with tens of millions of parameters.
- Abstract(参考訳): 公正なAIシステムには多くの関心があるが、フェアネス非コンプライアンス(フェアモデルが実際に使用されているかどうかを懸念する)の問題は、あまり注目されていない。
Zero-Knowledge Proofs of Fairness (ZKPoF)は、サービスプロバイダが、独自のモデルパラメータとデータに対する機密性を保証するとともに、モデルが同等に多様な人口層を提供することを、外部の当事者に検証できるようにすることによって、公正性に対処する。
それらは、公的な信頼と効果的なAI規制を構築する大きな可能性を持っているが、ZKPoFのこれまでのテクニックは、現実世界のデプロイメントに適していない。
我々は、最初のZKPoFフレームワークであるOATHを提示する。
i) サービスクエリ応答としてのMLに匹敵するクライアント対面通信と,漸近的に一定量の応答クエリを検証するオフライン監査フェーズを,デプロイ可能な効率で実現する。
(ii) 正しい推論のゼロ知識証明が与えられた任意のスコアベースの分類器に対して、モジュラリティで柔軟に展開可能であること。
三 トレーニング、推論、監査の秘密性及び公正性を保証するエンドツーエンドのセキュリティモデルで、デプロイ可能を確保すること。
OATHは、具体的なパラメータ設定において、悪意のある敵に対して強い堅牢性が得られることを示す。
特に、OATHは、ニューラルネットワークZKPoFの以前の作業よりも、ランタイムを1343倍改善し、数千万のパラメータを持つDNNでさえ、はるかに大きなモデルにスケールする。
関連論文リスト
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
推薦システム(RSRS)は、ユーザの好みとプライバシの両方に対処する。
通信効率を向上させるために,非一様勾配勾配勾配を取り入れた新しい手法を提案する。
RFRecFの強靭性は、多様なベースラインに比べて優れている。
論文 参考訳(メタデータ) (2024-11-03T12:10:20Z) - FedCert: Federated Accuracy Certification [8.34167718121698]
フェデレートラーニング(FL)は、機械学習モデルを分散的にトレーニングするための強力なパラダイムとして登場した。
従来の研究では、認定精度に基づいて、集中訓練におけるモデルの有効性を評価してきた。
本研究では,FLシステムのロバスト性を評価するためのFedCertという手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T01:19:09Z) - Certifiably Byzantine-Robust Federated Conformal Prediction [49.23374238798428]
本稿では,悪意のあるクライアントに対する堅牢な共形予測を行う新しいフレームワークRob-FCPを提案する。
我々は、さまざまなビザンチン攻撃の下で、悪意のあるクライアントの多様な割合に対するRob-FCPの堅牢性を実証的に実証した。
論文 参考訳(メタデータ) (2024-06-04T04:43:30Z) - Secure and Verifiable Data Collaboration with Low-Cost Zero-Knowledge
Proofs [30.260427020479536]
本稿では,セキュアかつ検証可能なデータコラボレーションのための新しい高効率ソリューションRiseFLを提案する。
まず,ZKP生成と検証のコストを大幅に削減する確率論的整合性検査法を提案する。
第3に,ビザンチンのロバスト性を満たすハイブリッドなコミットメントスキームを設計し,性能を向上する。
論文 参考訳(メタデータ) (2023-11-26T14:19:46Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - FedVal: Different good or different bad in federated learning [9.558549875692808]
フェデレート・ラーニング(FL)システムは悪意のあるアクターからの攻撃を受けやすい。
FLは、異なる人口集団の公正なパフォーマンスを保証するなど、グループの偏見に対処する上で、新たな課題を提起する。
このようなバイアスに対処するために使用される従来の方法は、FLシステムが持っていないデータへの集中的なアクセスを必要とする。
我々は、クライアントからの追加情報を必要としない堅牢性と公正性の両方に対して、新しいアプローチであるFedValを提案する。
論文 参考訳(メタデータ) (2023-06-06T22:11:13Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - Confidence-Calibrated Face and Kinship Verification [8.570969129199467]
検証モデルにより、類似度スコアを任意の顔対に対する信頼スコアに変換することができる効果的な信頼度尺度を導入する。
また,実装が容易で,既存の検証モデルにも容易に適用可能な,信頼性校正アプローチであるAngular Scaling(ASC)を提案する。
我々の知識を最大限に活用するために、我々の研究は、現代の顔と親族関係の検証タスクに対する、初めての包括的信頼度校正ソリューションを提示した。
論文 参考訳(メタデータ) (2022-10-25T10:43:46Z) - Adversarial Training with Rectified Rejection [114.83821848791206]
本稿では,信頼度(T-Con)を確実性オラクルとして利用し,信頼度を補正してT-Conを予測することを提案する。
軽度の条件下では、正当性(R-Con)拒絶器と信頼性(R-Con)拒絶器を結合して、不正に分類された入力と正しく分類された入力を区別できることを示す。
論文 参考訳(メタデータ) (2021-05-31T08:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。